PHYSICAL CHEMISTRY 3510
 EXAM 2

October 21, 2013

IMPORTANT: Write neatly and lay out solutions clearly. Make sure that you give the reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a briefjustification or explanation. Give units for all quantities!

Your name: \qquad

SOME POSSIBLY USEFUL INFORMATION:
N_{A} or $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$d U=d q+d w$
$d w=-p_{e x} d V$
Perfect gas: $\mathrm{pV}=\mathrm{nRT}$
Heat engine: $\varepsilon=\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) / \mathrm{T}_{\mathrm{h}}$
$\mathrm{dS}=\mathrm{dq}_{\mathrm{rev}} / \mathrm{T} \quad \mathrm{G}=\mathrm{H}-\mathrm{TS}$

$$
\mathrm{H}=\mathrm{U}+\mathrm{pV}
$$

$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{nR}$
Adiabat: $\mathrm{pV}^{\gamma}=$ constant
$\mathrm{A}=\mathrm{U}-\mathrm{TS}$

1) 30 points

Consider the reversible Carnot cycle below, where the working fluid is 1 mol of perfect gas.

a) When 40 J of heat is absorbed at $\mathrm{T}_{\mathrm{h}}, 25 \mathrm{~J}$ of work are obtained. Calculate the efficiency and T_{c}.
b) What can you say about the work obtained if the cycle was irreversible?
c) What can you say about the sum of the changes in enthalpy for the four steps $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$, and why?
d) What can you say about the heat transfer in the $B \rightarrow C$ step?
e) If the cycle was run in reverse and 10 J of work were done on the system, how much heat would be absorbed at T_{c} ?
a) $\varepsilon=\frac{25 \mathrm{~J}}{40 \mathrm{~J}}=0.625=\frac{T_{h}-T_{c}}{T_{h}} \therefore 375 \mathrm{~K}=600 \mathrm{~K}-T_{c} \therefore T_{c}=225 \mathrm{~K}$.
t) The work obtained word te lass.
c) Because this is a cycle and the system returns to its original state, there is no net change in any state function, and $\Delta H=\oint d H=0$.
d) Zero for an adiabatic change.
e) If ran forwards, $\varepsilon=\frac{-w}{q_{h}}=\frac{10 \mathrm{~J}}{q_{h}}=0.625 \therefore{q_{h}}_{h}=16 \mathrm{~J}$.

Thus, when ven in veverce, 16 J are rejected at $T_{n}, 10 \mathrm{~J}$ came from the work, so $q_{c}=16 \mathrm{~J}-10 \mathrm{~J}=6 \mathrm{~J}$.
2) 30 points
Consider two blocks of aluminum (the system), one at 400 K and the other at 300 K . They are allowed to touch and 100 J of heat are transferred to the colder block. Calculate $\Delta \mathrm{S}$ for the system (show work). You may assume that the blocks have enough heat capacity that their temperatures remain constant.

This is a spontaneous pries. We need to dasign a verensitle path to the same final state.
i) Reversibly and isothermally transfer 100 J to gas in a piston (in the

$$
\Delta S_{s y s}=\frac{-100 \mathrm{~J}}{400 \mathrm{~K}}=-0.25 \mathrm{JK}
$$

ii) Let the gas expend vereavitly and adictatically until its tomgeratere drops to 300k, $\Delta S_{\text {suer }}=0$ and $\Delta S_{\text {says }}=0$ because $q_{\text {pen }}=0$,
iii) Compress the gas reveritty and is thermally until 100 J are tremiferred to the cooler block:

$$
\Delta S_{\text {syst }}=\frac{100 \mathrm{~J}}{300 \mathrm{~K}}=+0.333 \mathrm{Jk}^{-1}
$$

overall $\Delta S_{y s}=-0.25+0.373 \mathrm{Jk}^{-1}=0.083 \mathrm{Jk}^{-1}$
and because S is a state function, this is ΔS for the original irreversitle process too.
3) 40 points
i) Starting with an expression for dG in terms of $\mathrm{p}, \mathrm{V}, \mathrm{T}$ and S , show that $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}=-(\partial \mathrm{S} / \partial \mathrm{p})_{\mathrm{T}}$.
ii) Hence determine $\Delta \mathrm{S}$ for the isothermal expansion of 1 mole of a non-ideal gas accomplished by reducing the pressure from p_{1} to p_{2}. The equation of state for 1 mole of this gas is $p=(R T / V)-a$.
i)

$$
\begin{aligned}
& d U=d q+d w=T d S-p d V \\
& \begin{aligned}
G=H-T S=U+p V-T S \therefore d G & =d U+V d p+p d V-S d T-T d S \\
& =(T d S-p d V)+V d p+p d V-S d T-T d S \\
& =V d p-S d T .
\end{aligned}
\end{aligned}
$$

If G is $G(p, T)$, then $d G=\left(\frac{\partial G}{\partial p}\right)_{T} d p+\left(\frac{\partial G}{\partial T}\right)_{p} d T$
The coefficients of $d \rho$ ad $d T$ are opal in these formulations of $d h$, so $\left(\frac{\partial G}{\partial p}\right)_{T}=V$ and $\left(\frac{\partial G}{\partial T}\right)_{p}=-S$.
The second derivatives are equal:

$$
\frac{\partial 2 G}{\partial p \partial T}=\left(\frac{\partial\left(\frac{\partial a}{\partial p}\right)_{T}}{\partial T}\right)_{P}=\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial\left(\frac{\partial G}{\partial T}\right)_{T}}{\partial P}\right)_{T}=-\left(\frac{\partial S}{\partial p}\right)_{T}
$$

ii) $\Delta s=\int d s=\int_{P_{1}}^{p_{2}}\left(\frac{\partial s}{\partial p}\right)_{T} d p$.

Here, $p=\frac{R T}{V}-a \therefore p+a=\frac{R T}{V} \therefore V=\frac{R T}{p+a} \therefore\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{R}{p+a}$

$$
\begin{aligned}
\therefore \Delta S=\int_{p_{1}}^{p_{2}} \frac{-R}{p_{1}+a} d p=-R[\ln (p+a)]_{p_{1}}^{p_{2}} & =-R \ln \left(\frac{p_{2}+a}{p_{1}+a}\right) \\
& =R \ln \left(\frac{p_{1}+a}{p_{2}+a}\right) .
\end{aligned}
$$

