EXAM 3 ## November 5, 2018 IMPORTANT: Write neatly and lay out solutions clearly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a <u>brief</u> justification or explanation. <u>Give units for all quantities!</u> Some data: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$ 1 atm = 101325 Pa dU = dq + dw $dS = dq_{rev}/T$ $\gamma = C_p/C_V$ $C_p-C_V = nR$ $dw = -p_{ex} dV$ Heat engine $\varepsilon = (T_h - T_c)/T_h$ adiabat: $pV^{\gamma} = const$ H = U + pV G = H - TS A = U - TS - (1) 30 points - Starting from the Clausius equation $dp/dT = \Delta S/\Delta V$ for a phase transition, deduce the approximate Clausius-Clapeyron relation $dp/dT = p \Delta_{vap}H/(RT^2)$. $\Delta_{vap}H$ is the enthalpy of vaporization. Hence prove that for two temperatures T_1 and T_2 , the corresponding vapor pressures p_1 and p_2 obey the relation $ln(p_2/p_1) = -(\Delta_{vap}H/R)(1/T_2 1/T_1)$. Show work. - ii) Use the results above to deduce the temperature at which the vapor pressure of water is 2×10^4 Pa, given that it is 10^5 Pa at 373 K and Δ_{vap} H is 41 kJ mol⁻¹. You may treat water vapor as a perfect gas and assume that Δ_{vap} H does not vary with temperature. - iii) Water is part of an ideal solution with a mole fraction of 0.7 at 373 K. What partial pressure of H₂O(g) do you expect? Suppose instead this solution is non-ideal and exhibits a negative deviation from Raoult's Law. What would be the effect on the partial pressure of H₂O(g)? - (2) 40 points - i) Starting with the definition of A, and through consideration of A as a function of T and V, show that $(\partial S/\partial V)_T = (\partial p/\partial T)_V$. Be sure to justify each step. ii) Hence determine ΔS for the isothermal compression of 1 mole of a non-ideal gas accomplished by increasing the pressure from p_1 to p_2 and decreasing the volume from V_1 to V_2 . The equation of state for 1 mole of this gas is $p = (RT/V) + aT^2/V^2$ where a is a constant. i) $$A=U-TS$$ so $dA=dU-TdS-SdT$. = $dy+dw-TdS-SdT$ = $TdS-pdU-TdS-SdT$ = $-pdV-SdT$. i) $$\Delta S = \int dS = \int_{1}^{2} (3f) dV = \int_{1}^{2} (3f) dV$$ $P = RT + aT^{2} = (3f) = R + 2aT$ $$\Delta S = \int \left(\frac{R}{V} + \frac{2aT}{V^2}\right) dV = \left[RhV - \frac{2aT}{V}\right]_{V_1}^{V_2}$$ $$= Rh\left(\frac{V_2}{V_1}\right) - 2aT\left(\frac{1}{V_2} - \frac{1}{V_1}\right).$$ ## (3) *30 points* - i) For 1 mol of a perfect gas, $\mu = \mu^o + RT \ln (p/p^o)$. Imagine making a mixture of n_A mol of gas A with n_B mol of gas B, with a total amount $n_A + n_B$ of the two combined, from pure components. The initial pressures of the separate components are both p and the total pressure of the final mixture is also p. Show that the change in G upon mixing is $\Delta_{mix}G = nRT(x_A \ln x_A + x_B \ln x_B)$, where x_A is the mole fraction of A in the mixture, etc. for x_B . - ii) What value of x_A makes $\Delta_{mix}G$ most negative? HINT: $x_A + x_B = 1$. - iii) Knowing that the entropy of mixing $\Delta_{mix}S = -nR(x_A \ln x_A + x_B \ln x_B)$, deduce $\Delta_{mix}H$. i) For gas A, the includ pressure is pad the final is PA, the partial pressure in the mixture. For n_A mod, $$\Delta G = n_A M_A + n_A RT \ln(PA/P^0) - [n_A M_A + n_A RT \ln(P/P^0)]$$ = $n_A RT$ ($\ln PA/P^0 - \ln P/P^0$) = $n_A RT$ ($\ln PA/P^0$). PA=XAP SO DG = NART IN (XAP/P) = NART IN XA. Sinilarly, DG = NBRT IN XB. a) Nothing special about xx vs xR in Onix S 50 xx = xx : . Goth copyed 0.5. b) Oxix S minimized whom xx hxxx + xx laxx is minimized. Write x=xx = (1-xx) so xx=1-x. we at $$\frac{1}{4} (x \ln x + (i-x) \ln (i-x)) = 0 = x \cdot \frac{1}{2} + \ln x + (i-x) \cdot \frac{-1}{1-x} - \ln (i-x)$$ $$= 1 + \ln x - 1 - \ln (i-x) = \ln x - \ln (i-x)$$ $$= \ln (x - x)$$ $$\therefore \frac{1}{1-x} = 1 \cdot x = 1 - x \cdot x = 0.5$$