EXAM 4

November 20, 2015

IMPORTANT: Write neatly and lay out solutions clearly. Make sure that you give reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a <u>brief</u> justification or explanation. Give units for all quantities!

YOUR NAME SOLUTIONS

Some data:

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
 $N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$ 1 atm = 101325 Pa

$$dU = dq + dw$$

$$dS = dq_{rev}/T$$

$$\gamma = C_p/C_V$$
 $C_p-C_V = nR$

$$C_p - C_V = nR$$

$$dw = -p_{ex} dV$$

Heat engine
$$\varepsilon = (T_h - T_c)/T_h$$

adiabat:
$$pV^{\gamma} = const$$

$$H = U + pV$$

$$G = H - TS$$

$$A = U - TS$$

$$k = A \exp(-E_a/(RT))$$

mean K.E. =
$$1.5 k_B T$$

$$d \ln K/d (1/T) = -\Delta H/R$$

$$\Delta_{\rm r}G = \Delta G^{\rm o} + {\rm RT} \, \ln \, {\rm Q}$$

(1) *30 points*

Consider the reaction $A \rightarrow 3$ B which has the rate law $v = k [A]^4$. Deduce the integrated rate law and hence determine the half-life of A. Show work.

When too, CA= CA, so the constant to -3 CA,

when t=t1/2, CA= CA2/2

(2) 40 points

Consider the UV photochemical chlorination of methane with the proposed mechanism

$$Cl_2 + h\nu \rightarrow Cl + Cl$$

rate of photon absorption I_a

$$Cl + CH_4 \rightarrow HCl + CH_3$$
 rate constant k_1

$$Cl_2 + CH_3 \rightarrow CH_3Cl + Cl_2$$
 rate constant k_2

$$Cl + Cl \rightarrow Cl_2$$

rate constant k₃

The overall reaction is $Cl_2 + CH_4 \rightarrow CH_3Cl + HCl$. In terms of the concentrations of these four species, Ia and elementary rate constants, derive the rate law. You may assume that any chain carriers are in steady state.

If the absorption of 0.1 einstein of photons leads to formation of 3 mol of CH₃Cl, what is the quantum yield of this process?

$$\therefore \quad CCI] = \sqrt{\frac{T_A}{k_3}}$$

(3) 30 points

A proposed mechanism for the overall reaction 2 NO + $O_2 \rightarrow 2$ NO₂ is

$$2 \text{ NO} \rightarrow \text{N}_2\text{O}_2$$

fast, rate constant k1

$$N_2O_2 \rightarrow 2 NO$$

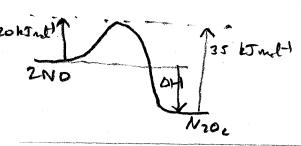
fast, rate constant k2

$$N_2O_2 + O_2 \rightarrow 2 NO_2$$

slow, rate constant k₃

Treat this as a pre-equilibrium problem to deduce the rate law and the effective third-order rate constant k_{eff} in terms of k_1 , k_2 and k_3 . What are appropriate units for k_{eff} ?

Given that the activation energies for k_1 , k_2 and k_3 are 20, 35 and 12 kJ mol⁻¹, respectively, what is ΔH for the first step? What is the activation energy for k_{eff} ?


$$V = -\frac{dCNroz}{dt} = k_3(Nroz](0z)$$

Prequilibrium
$$2NO = N_2O_2$$
 has $K_{eq} = \frac{k_1}{k_2} = \frac{[N_2O_2]}{[NO]^2}$

:
$$(N_2O_2] = \frac{h_1}{h_2} (N_0)^2 : V = \frac{k_1 k_2}{k_2} (N_0)^2 (O_2)$$

and keff =
$$\frac{k_1 k_3}{k_2}$$
. Units are cone² s-1 Such as M⁻²s + w mot⁻² dm⁶ s-1.

$$E_{a} = 20 + 12 - 35 = -3 \text{ kT met}^{-1}$$

