PHYSICAL CHEMISTRY 5200
 MIDTERM EXAM

October 24, 2019

Please write neatly and clearly, and show all working. Allocate time to each question in proportion to the available credit. Keep any explanations brief and clear.

Your name: \qquad

SOME POSSIBLY USEFUL INFORMATION:
N_{A} or $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
k or $\mathrm{k}_{\mathrm{B}}=\mathrm{R} / \mathrm{N}_{\mathrm{A}}$
$d U=d q+d w$
$\mathrm{dS}=\mathrm{dq}_{\mathrm{rev}} / \mathrm{T}$
$d w=-p_{e x} d V$
$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
Perfect gas: $\mathrm{pV}=\mathrm{nRT} \quad$ and $\quad \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{nR}$
van der Waals gas: $p=n R T /(V-b)-a(n / V)^{2}$

Adiabat: pV^{γ} is constant
$\mathrm{H}=\mathrm{U}+\mathrm{pV}$
$\mathrm{A}=\mathrm{U}-\mathrm{TS}$
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

MULTIPLE CHOICE SECTION (7 questions, 5 points each, 35\% total credit) No work need be shown. Circle the best answer.

Information for questions 1 and 2, all at 298 K and $10^{5} \mathrm{~Pa}$:

compound	$\mathbf{S}^{\mathbf{0}} / \mathbf{J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$	$\mathbf{\Delta}_{\mathbf{f}} \mathbf{G}^{\mathbf{0}} / \mathbf{\mathbf { k J ~ m o l } ^ { \mathbf { 1 } }}$
$\mathrm{SO}_{2}(\mathrm{~g})$	248	-350
$\mathrm{O}_{2}(\mathrm{~g})$	205	
$\mathrm{SO}_{3}(\mathrm{~g})$	257	-371

1) At 298 K , the Gibbs energy change $\left(\Delta \mathrm{G}^{\mathrm{o}}\right)$ for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is
A. $\quad+42 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $\quad-21 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $\quad-42 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. more information needed
2) At 298 K , the enthalpy change $\left(\Delta \mathrm{H}^{\mathrm{o}}\right)$ for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is, in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$,
A. -98
B. -47
C. +14
D. more information needed
3) $\quad 0.5 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$, originally at $\mathrm{p}=5 \times 10^{5} \mathrm{~Pa}$ and $\mathrm{V}=5 \times 10^{-3} \mathrm{~m}^{3}$, is expanded reversibly and isothermally until $\mathrm{p}=10^{5} \mathrm{~Pa}$. The entropy change $\left(\Delta \mathrm{S}^{0}\right)$ is, in $\mathrm{J} \mathrm{K}^{-1}$
A. +6.7
B. +13.4
C. -6.7
D. +4030
4) The melting point of toluene (the system) at $10^{5} \mathrm{~Pa}$ is $-95^{\circ} \mathrm{C}$, and the enthalpy of fusion is $6.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is $\Delta \mathrm{S}$ for the system when 1 mol of liquid toluene freezes solid at $-95^{\circ} \mathrm{C}$, in $\mathrm{J} \mathrm{K}^{-1}$?
A. +69
B. +37
C. -69
D. -37
5) The boiling point of toluene (the system) at $10^{5} \mathrm{~Pa}$ is $111^{\circ} \mathrm{C}$, and the enthalpy of vaporization is $39.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is $\Delta \mathrm{S}$ for the surroundings when 1 mol of liquid toluene vaporizes at $111^{\circ} \mathrm{C}$, in $\mathrm{J} \mathrm{K}^{-1}$?
A. +102
B. +35
C. -102
D. -353
6) When 1.4 mol of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ is mixed with 0.8 mol of $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})$ at 298 K , the entropy of mixing ($\Delta_{\text {mix }} \mathrm{S}$) is approximately, in $\mathrm{J} \mathrm{K}^{-1}$:
A. -3.6
B. +12.0
C. +5.5
D. -12.0
7) An ideal gas is taken through a cyclic process. Certain thermodynamic quantities will be zero: choose the answer for which all the listed quantities must be zero.
A. w, U, H, G
B. $\mathrm{q}, \mathrm{S}, \mathrm{U}, \mathrm{G}$
C. w, H, A, S
D. S, U, H, A

PROBLEM SECTION (3 questions, 65\% total)
Show your work for these questions
8) 15 points

Consider a system where $C_{p}=a+b / T$ where a and b are constants. In terms of a and b, calculate ΔS for the system for heating from T_{1} to T_{2} at constant pressure p. If this change is made irreversibly, what can you say about $\Delta \mathrm{S}$ for the surroundings compared to $\Delta \mathrm{S}_{\text {sys }}$?

Given the general relation $\mathrm{dp} / \mathrm{dT}=\Delta \mathrm{S} / \Delta \mathrm{V}$ for a phase change, show that for vaporization of a liquid to a perfect gas, we expect the pressure of the vapor p approximately to follow the form $\ln \mathrm{p}=-\Delta_{\text {vap }} \mathrm{H} /(\mathrm{RT})+$ constant where $\Delta_{\text {vap }} \mathrm{H}$ is the enthalpy of vaporization.

The vapor pressure of a compound is measured to follow
$\ln (p$ in bar $)=8.7-2380 / \mathrm{T}$
where $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ and T is the temperature in K . Deduce the normal boiling point T_{b} and $\Delta_{\text {vap }} H$.
10) 25 points
Consider G as a function of T and p , and expand dG in terms of $\mathrm{T}, \mathrm{p}, \mathrm{V}$ and S , to derive the results

$$
\left(\frac{\partial G}{\partial p}\right)_{T}=V \quad \text { and } \quad\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

Hence show that $\quad\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T}$
Use one of these equations to determine $\Delta \mathrm{G}$ for an isothermal pressure change of a perfect gas from p_{1} to p_{2}. Hence show that with $p_{1}=p^{o}$ where G is G^{0}, and p_{2} a general value p, that G at any pressure can be written as

$$
\mathrm{G}=\mathrm{G}^{\mathrm{o}}+\mathrm{RT} \ln \left(\mathrm{p} / \mathrm{p}^{\mathrm{o}}\right)
$$

What is $\Delta \mathrm{G}$ for the isothermal pressure change of a non-ideal gas from p_{1} to p_{2}, whose equation of state is $\mathrm{pV}=\mathrm{n}(\mathrm{RT}-\mathrm{aV})$?

Blank for more space

