PHYSICAL CHEMISTRY 5200

MIDTERM EXAM

October 7, 2021

Please write neatly and clearly, and <u>show all working</u>. Allocate time to each question in proportion to the available credit. Keep any explanations brief and clear.

NAME	SOLUTIONS	

SOME POSSIBLY USEFUL INFORMATION:

$$N_A$$
 or $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$k \text{ or } k_B = R/N_A$$

$$dU = dq + dw$$

$$dS = dq_{rev}/T$$

$$dw = -p_{ex} dV$$

$$\gamma = C_p/C_v$$

Perfect gas:
$$pV = nRT$$

$$C_p$$
 - $C_v = nR$

van der Waals gas: $p = nRT/(V-b) - a(n/V)^2$

Adiabat:
$$pV^{\gamma}$$
 is constant

Heat engine
$$\varepsilon = (T_h - T_c)/T_h$$

$$H = U + pV$$

1) 40 points

- (a) 1 mol of CO_2 (g), the system, initially at $p=7 \times 10^5$ Pa and $V=3 \times 10^{-3}$ m³, is expanded reversibly and isothermally until $p=1 \times 10^5$ Pa. C_p is 37 J K⁻¹. Calculate q, w, ΔU , ΔH and ΔS for the system.
- (b) Suppose instead, from the same initial conditions, 1 mol of CO_2 (g) expands until p = 1×10^5 Pa reversibly and adiabatically. Now what are q, w, ΔU , ΔH and ΔS for the system?
- a) At cont. T, $\Delta U = \Delta H = 0$ so $\gamma = -\omega$,

 Reversible so $d\omega = -pdV = -\beta J dV$, $\omega = \int -\beta J dV = -RT \ln \left(\frac{V_2}{V_1}\right)$. $\frac{V_2}{V_1} = \beta I/\rho_2 = 7$ so $\omega = -RT \ln 7$ $\approx -4090 J$. $\gamma = +4090 J$. $\Delta S = \gamma_{rev}/T = 16.2 J X^T$.
- 6) q = 0 and $\Delta S = 0$, $\Delta U = CV \cdot \Delta T$. $S = \frac{CP}{CV} = \frac{37}{Q R} = \frac{37}{37 \cdot 8 \cdot 314} = \frac{1 \cdot 2q}{4!}$ $f_{1} = \frac{V_{2}}{V_{1}} = 7 \cdot L_{1} \cdot L_{1} = \frac{1}{7} \times \frac{1}{1} \cdot \frac{V_{2}}{V_{1}} = \frac{37}{11 \cdot 51} \cdot \frac{V_{2}}{V_{1}} = \frac{4}{152} \cdot \frac{52}{V_{1}} = \frac{1}{7} \times \frac{1}{152} \cdot \frac{1}{7} \cdot \frac{1}{152} = \frac{1}{7} \times \frac{1}{152} \cdot \frac{1}{152} \cdot \frac{1}{7} \cdot \frac{1}{152} = \frac{1}{7} \times \frac{1}{7} \cdot \frac{1}{152} \cdot \frac{1}{7} \cdot \frac{1}{152} = \frac{1}{7} \times \frac{1}{7} \cdot \frac{$

2) 20 points

 ΔC_p for a chemical reaction is given by $a+b/T^2$. By how much does the reaction enthalpy ΔH alter when the temperature changes from T_1 to T_2 ? How much does the entropy change ΔS alter by going from T_1 to T_2 ?

(hange in
$$\Delta H = \int_{T_1}^{T_2} \Delta(\rho, dT) = \int_{T_1}^{T_2} (a + bT^{-2}) dT$$

$$= \left[aT - bT^{-1} \right]_{T_1}^{T_2} = a \left(T_2 - T_1 \right) - b \left(\frac{1}{T_2} - \frac{1}{T_1} \right).$$
(hange in $\Delta S = \int_{T_1}^{T_2} \Delta(\rho, dT) = \int_{T_1}^{T_2} (aT^{-1} + bT^{-3}) dT$

$$= \left[a \ln T - \frac{1}{2} b T^{-2} \right]_{T_1}^{T_2} = a \ln \left(\frac{1}{T_1} \right) - \frac{1}{2} b \left(\frac{1}{T_2} - \frac{1}{T_2} \right).$$

3) 20 points

- (a) Imagine an ideal Carnot heat engine operates between $100 \, ^{\circ}$ C and $20 \, ^{\circ}$ C. How much heat will be rejected at $20 \, ^{\circ}$ C when the engine performs work -w = $50 \, \text{J}$?
- (b) An ideal Carnot heat engine operates in reverse to move heat from cold (5 $^{\circ}$ C) to hot (25 $^{\circ}$ C). How much work must be provided to move heat $q_c = 1000$ J from the low temperature region?

a)
$$T_h = 373 \, \text{K}$$

efficiency is $-\omega = T_h - T_c = \frac{373 - 293}{373}$
 $V - \text{eve}$
 $V - \text{eve$

b)
$$T_{1} = 298K$$
 $T_{2} = 298K$
 $T_{2} = 298 - 278 = 010671$
 $T_{2} = 278K$
 $T_{2} = 278K$
 $T_{3} = 298 - 278 = 010671$
 $T_{4} = 40$
 $T_{5} = 40$
 $T_{6} = 40$
 $T_{6} = 40$
 $T_{7} = 13.9$
 $T_{7} = 13.9$
 $T_{7} = 13.9$
 $T_{7} = 13.9$

4) 20 points

- (a) A system changes in a way that its entropy decreases by 36 J K⁻¹. During this change 15 kJ mol⁻¹ left the system and entered the surroundings at 298 K. Deduce whether this change is spontaneous (irreversible) or not?
- (b) For N_2 gas at 298 K and 1 x 10^5 Pa, attractive forces between the molecules dominate over repulsions. Explain if you expect the gas to heat up, cool down or stay the same temperature if it undergoes a Joule-Thompson expansion.

a)
$$\Delta S_{sys} = -36 \text{ JK}^{-1}$$

 $\Delta S_{sum} = \frac{15 \text{ kJ mol}^{-1}}{298 \text{ K}} = 50.3 \text{ JK}^{-1}$
 $\Delta S_{uni} = \Delta S_{ys} + \Delta S_{sum} \approx 14 \text{ JK}^{-1} > 0$
:. spontaneous,

b) As p goes down, the molecules are separated against the intermolecular attraction. The energy comes from the kinetic energy of the molecules, so the everage goes down, i.e., the temperature drops.