EXAM 1

27 September 2001

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a brief justification or explanation. Give units for all quantities!

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

YOUR NAME SOLUTIONS
(1) 20 points
(a) Starting with the expression $\mathrm{pV}=\mathrm{Nmc}^{2} / 3$ (where $\mathrm{N}=$ number of molecules of mass m in a volume V at a pressure p and temperature T), derive an expression for the average kinetic energy ϵ of molecules in terms of some or all of these variables and Boltzmann's constant k_{B}. Show work! (b) The molar masses of H_{2} and atomic S vapor are 0.002 and $0.032 \mathrm{~kg} \mathrm{~mol}^{-1}$. Find ϵ and c for these two species at $10^{5} \mathrm{~Pa}$ and 600 K .
(c) H_{2} effuses at 10 times the rate of an unknown compound from the same container. Estimate the molar mass of the unknown compound.
a)

$$
\begin{aligned}
\epsilon & =\frac{1}{2} m c^{2} \text { so } p V=\frac{N m c^{2}}{3}=\frac{2}{3} \epsilon \cdot N=n R T \therefore \epsilon=\frac{n R T}{N} \cdot \frac{3}{2} \\
& =\frac{n R T}{n \cdot N_{A}} \cdot \frac{3}{2}=\frac{3}{2} k_{B} T .
\end{aligned}
$$

6) Both have the same $\epsilon=\frac{3}{2} \times 1.391 \times 10^{-23} \mathrm{JK}^{-1} \times 600 \mathrm{~K}=1.24 \times 10^{-20} \mathrm{~J}$.

$$
\epsilon=\frac{1}{2} m c^{2} \text { so } \quad c=\sqrt{\frac{2 \epsilon}{m}}
$$

$$
m \text { for } \mathrm{H}_{2} \text { is } \frac{0.002 \mathrm{~kg}}{N_{A}}=3.32 \times 10^{-27 \mathrm{~kg} ;} c=2730 \mathrm{ms-1} \text {. }
$$

m for S is 16 times greater and $c<\frac{1}{\sqrt{m}} \therefore c=\frac{2730}{4} m^{-1}=683 \mathrm{mb}^{-1}$.
c) Rate of effusion $\alpha<\alpha \frac{1}{\sqrt{m}} \therefore$ mathown m is 100 times greater ie. 0.2 kg mol .
(2) 40 points
(a) Starting with the information that SF_{6} has 15 vibrational modes, make an estimate of the heat capacity C_{V} at the high and low temperature limits for 1 mole of this gas.
(b) Use your estimate, or if you do not have one use C_{V} for $1 \mathrm{~mol}=40 \mathrm{~J} \mathrm{~K}^{-1}$, to calculate q , w , $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ when the temperature is reversibly lowered from 300 to 200 K and the initial pressure is $10^{5} \mathrm{~Pa}$. Assume SF_{6} behaves perfectly and show work.
i) At constant volume.
ii) At constant pressure.
iii) Adiabatically.
a) Non-(inear has 3 degrees of translational freedom and three of rational: molecule
each contributes $\frac{R}{2}$ to C_{V} jo at $C_{0} T, C_{V}=\frac{3}{2} R+\frac{3}{2} R=3 R$.
At high T each vibrational mode contributes R so $C_{V}=3 R+15 R=18 R$.
6) $U 5 \operatorname{ng} \quad C_{V}=3 R=24.9 \mathrm{Jk}^{-1}:$
i) $w=0 . \quad \Delta U=C_{V} \Delta T=-2490 \mathrm{~J}=q+w=q$ hare.

$$
\Delta H=C_{\rho} \Delta T=\left(C_{V}+R\right) \Delta T=-3330 \mathrm{~J}
$$

ii) $d w=-p d V$ so $w=-\int_{0}^{V_{2}} p d V=-p\left(V_{2}-V_{1}\right)$ here (canst. p).

$$
w=-10^{5} \times(0.01663-0.02494) P_{a} m^{3}=+831 \mathrm{~J}
$$

$\Delta U, \Delta H$ same as $(i) \therefore q=\Delta U-w=-3320 \mathrm{~J}$.
iii) $\Delta U, \Delta H$ same as $i_{n}(i) . \quad q=0$ so $w=\Delta U$ here.
(3) 40 points

Consider the hydrogenation of benzene to form cyclohexane:

$$
\mathrm{C}_{6} \mathrm{H}_{6}(l)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(l)
$$

$\Delta \mathrm{H}$ for combustion to $\mathrm{CO}_{2}(g)$ and/or $\mathrm{H}_{2} \mathrm{O}(l)$ at 298 K for $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{12}$ and H_{2} is $-3270,-4000$ and $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. C_{p} for $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{12}$ is $70+0.3 \mathrm{~T}, 20+0.05 \mathrm{~T}$ and $110+$ $0.2 \mathrm{~T} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively.
i) Show that $\Delta \mathrm{H}$ for hydrogenation at 298 K is $-128 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
ii) Deduce $\Delta \mathbf{U}$ for hydrogenation at 298 K .
iii) Deduce $\Delta \mathrm{H}$ for hydrogenation at 1000 K .
i)

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{x} 88 \mathrm{H}_{12}(\mathrm{l}) \\
& x+\Delta H_{2}=\Delta H_{1} \text { (Hess' Law) } \\
& \stackrel{\Delta H_{1}}{v\left(-90_{2}\right)} \quad, ~ /\left(+90_{2}\right) \\
& \therefore x-4000 \mathrm{kJmol}^{-1}=-3270+3 \times(-286) \mathrm{kJ} \mathrm{~mol}^{-1} \\
& \therefore x=-128 \mathrm{~kJ} \operatorname{mol}^{-1} \text {. } \\
& 6\left(\mathrm{O}_{2} / 9\right)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$\therefore \quad \mathrm{i}) \quad H=U$ hpV $\therefore \Delta U=\Delta H-\Delta(p V)=\Delta H-R T \Delta$ gas.

$$
\Delta u_{\text {gas }}=-3 \text { so } \Delta U=-128-\frac{8.314 \times 298 \times-3}{1000} \mathrm{kJmol}^{-1}=-120.6 \mathrm{~kJ} \mathrm{~mol}^{1-1} \text {. }
$$

$$
\text { iii) } \begin{aligned}
\Delta H_{1000} & =\Delta H_{298}+\int_{T_{1}}^{T_{2}} \Delta C_{p} d T . \\
\Delta C_{p} & =110+0.2 T-(70+0.3 T+3 \times(20+0.05 T))=-20-0.25 T \\
\Delta H_{1000} & =-128000+\left[-20 T-0.125 T^{2}\right]_{298}^{1000} \mathrm{Jmol} \\
& =-128000+\left\{-2 \times 10^{4}-\left(1.25 \times 10^{5}\right)+5960+1.110 \times 10^{4}\right\} \mathrm{Jmol}^{-1} \\
& =-128000-127900 \mathrm{Jmol} \\
& =-255.9 \mathrm{kJmol}^{-1} .
\end{aligned}
$$

