EXAM 1

23 September 2002

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a brief justification or explanation.

Give units for all quantities!

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

YOUR NAME \qquad
(1) 30 points
(a) The compression factor for ethylene is about 1.3 at $\mathrm{p}=300 \mathrm{bar}$, about 0.6 at $\mathrm{p}=100 \mathrm{bar}$, and tends to 1 exactly as p tends to zero. Give a brief, qualitative explanation. Feel free to draw any picture (s) that might help.
(b) A real gas (the system) with the following equation of state

$$
\mathrm{p}=\mathrm{nRT} /(\mathrm{V}-\mathrm{nb})-\mathrm{a}(\mathrm{n} / \mathrm{V})^{3}
$$

is expanded reversibly and isothermally from V_{1} to V_{2} at temperature T . Calculate the work w done on the system.
a) See notes.

At vary life pressures repulsion dominates ad $2>1$.
At moderate pressures attractive frees dominie and $z<1$. At very low pressers intermolecular farces become close to zero,

6) $\quad d w=-p_{\text {ex }} d v=-p d v$ here (reversible).

$$
\begin{aligned}
\therefore \omega=-\int_{v_{1}}^{v_{2}} \rho d V & =-\int_{V_{1}}^{v_{2}} \frac{n R T}{V-n t} d V+\int_{v_{1}}^{v_{2}} a\left(\frac{n}{v}\right)^{3} d V \\
& =-n R T[\ln (v-n t)]_{v_{1}}^{V_{2}}-\frac{a n^{3}}{2}\left[\frac{1}{v^{2}}\right]_{v_{1}}^{V_{2}} \\
& =n R T \ln \left(\frac{v_{1}-n t}{v_{2}-n t}\right)+\frac{a n^{3}}{2}\left(\frac{1}{v_{1}}-\frac{1}{v_{2}^{2}}\right)
\end{aligned}
$$

(2) 30 points

Elemental sulfur, $\mathrm{S}(\mathrm{s})$, reacts with elemental fluorine, $\mathrm{F}_{2}(\mathrm{~g})$, in a constant volume calorimeter to make $\mathrm{SF}_{6}(\mathrm{~g}) . \mathrm{C}_{\mathrm{p}}$ for these three substances is $20,30-1000 / \mathrm{T}$ and $100-8000 / \mathrm{T}$. The heat released from calorimeter is 600 kJ per mol of S consumed at 298 K . Calculate
(a) $\Delta_{\mathrm{f}} \mathrm{H}_{298}$ of $\mathrm{SF}_{6}(\mathrm{~g})$.
(b) $\Delta_{4} \mathrm{H}_{1100}$ of $\mathrm{SF}_{6}(g)$.
(c) $\Delta \mathrm{H}_{298}$ for the reaction $\mathrm{S}_{3} \mathrm{~F}_{4}(g)+7 \mathrm{~F}_{2}(g)-3 \mathrm{SF}_{6}(g)$, given that $\Delta_{4} \mathrm{H}_{298}$ of $\mathrm{S}_{3} \mathrm{~F}_{4}(g)$ is $-150 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\begin{aligned}
& \text { a) For } \mathrm{St}_{(\mathrm{s})}+3 \mathrm{~F}_{(\mathrm{s})} \rightarrow \mathrm{SF}_{6(\mathrm{~s})} \quad \Delta U=-600 \mathrm{~kJ} \mathrm{mal}^{-1} \text {. } \\
& H=U \text { ep } V \therefore \Delta H=\Delta U+\Delta(p V) \approx \Delta U+R T \Delta \text { gas } \\
& =\Delta U-2 R T \\
& =-600-\frac{28^{8} .314 \times 298}{1000} \mathrm{kJmot}^{-1} \\
& =-605 \mathrm{~kJ} \mathrm{root}^{-1} \text {. } \\
& \text { This is Oft } \mathrm{O}_{2 \mathrm{AB}} \text { (} \mathrm{SF}_{6(9)} \text {) }
\end{aligned}
$$

G)

$$
\begin{aligned}
& \Delta H_{1100}=\Delta H_{298}+\int_{298}^{1100} \Delta C_{p} \cdot d T \text {. } \\
& \Delta c p=100-\frac{8000}{T}-20-3\left(30-\frac{1000}{T}\right)=-10-\frac{5000}{T} . \\
& \int_{298}^{1100} \Delta C p d T=[-10 T-5000 \ln T]_{293}^{1100} \\
& =-11000+2980-35015+28485 \mathrm{~J} \mathrm{~mol} \\
& =-14550 \mathrm{Jmol}^{-1} \\
& \therefore \Delta_{f H_{1100}}=-605-14.6 \mathrm{kTmol}^{-1} \approx-620 \mathrm{kJmol}^{-1} \text {. }
\end{aligned}
$$

$\begin{array}{cccc}\text { c) } & S_{3} F_{4(9)}+7 F_{2(3)} \rightarrow & 3 S F_{6(9)} \\ \Delta_{f} H_{298} & -150 & 0 & -605 \times 3\end{array} \quad \mathrm{kJmal}^{-1}$

$$
\Delta H_{298}=-1815+150 \mathrm{~kJ} \mathrm{mal}^{-1}=-1665 \mathrm{~kJ} \mathrm{mal}^{-1} \text {, }
$$

(3) 40 points

1 mol of an ideal gas with $\mathrm{C}_{\mathrm{p}}=25 \mathrm{~J} \mathrm{~K}^{-1}$ is initially at 298 K . It is confined in a cylinder of crosssectional area $1 \times 10^{-3} \mathrm{~m}^{2}$ at a pressure of $10^{6} \mathrm{~Pa}$. A piston moves out 0.3 m and the gas expands adiabatically. Calculate $w, q, \Delta \mathrm{U}, \Delta \mathrm{H}$ for the gas, and its final temperature, when
(a) The experiment is carried out irreversibly against a constant external pressure of $10^{5} \mathrm{~Pa}$.
(b) The expansion is carried out reversibly.
a)

$$
\begin{aligned}
& q=0 \therefore \Delta U=w=-p_{e \times} \Delta V=-10^{5} P_{a} \times 1 \times 10^{-3} \mathrm{~m}^{2} \times 0.3 \mathrm{~m} \\
& =-30 \mathrm{~J} . \\
& C_{V}=C_{p}-R=16.69 \mathrm{Jk}^{-1} . \\
& \Delta U=C_{V} \Delta T \therefore \Delta T=-1.80 \mathrm{~K} . \\
& T \text { final }=298-1.8=296.2 \mathrm{~K} . \\
& \Delta H=C_{p} . \Delta T=-45 \mathrm{~J} .
\end{aligned}
$$

6)

$$
\begin{aligned}
& P_{1} V_{1}=n R T_{1} \therefore V_{1}=\frac{n R T_{1}}{P_{1}}=\frac{8.314 \times 298}{10^{6}} \mathrm{~m}^{3}=0.002478 \mathrm{~m}^{3} . \\
& V_{2}=V_{1}+10^{-3} \mathrm{~m}^{2} \times 0.3 \mathrm{~m}=0.002778 \mathrm{~m}^{3} . \\
& \gamma=C_{P} / C_{V}=\frac{25}{25-8.34}=1.498 . \\
& P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \therefore P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=10^{6} \mathrm{~Pa} \times 0.8427=8.427 \times 10^{5} \mathrm{~Pa} . \\
& T_{2}=\frac{P_{2} V_{2}}{n R}=281.6 \mathrm{~K} . \\
& \Delta T=-298+281.6 \mathrm{~K}=-16.4 \mathrm{~K} . \\
& \Delta U=C_{V} \Delta T=-2745=w \text { because } \gamma=0 . \\
& \Delta H=C_{P} . \Delta T=-410 \mathrm{~J} .
\end{aligned}
$$

