EXAM 1

25 September 2003

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a brief justification or explanation.
Give units for all quantities!

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
yOUR NAME SOLUTIONS
(1) 30 points
(a) Starting from the information that the weight of an object of mass m is mg , derive (show work) the result that a pressure p can support a column height h of incompressible fluid with density ρ, where $\mathrm{p}=\mathrm{pgh}$.
(b) The air pressure inside a major hurricane is $9 \times 10^{4} \mathrm{~Pa}$. Outside the pressure is $10^{5} \mathrm{~Pa}$. What height of water (density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$) in the storm can be supported by this pressure difference?
a) see notes
b) Pressure difference $p=10^{4} \mathrm{~Pa}=e g \mathrm{~h}$

$$
\therefore h=\frac{f}{e g}=\frac{10^{4} \mathrm{fa}}{1000 \mathrm{kgm}^{-3} \times 9.81 \mathrm{~m}^{-2}}=1.02 \mathrm{~m} .
$$

(2) 40 points
(a) Inside a diesel engine a mixture of fuel and air (average $\mathrm{Cp} 30 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$) in one of the cylinders is compressed reversibly and adiabatically such that its pressure increases from $10^{5} \mathrm{~Pa}$ to $10^{6} \mathrm{~Pa}$. Initially the volume is 0.3 L and the temperature 350 K . What are the final temperature, $w, q, \Delta U$ and ΔH for the gas during this process?
(b) Now the gas mixture ignites and the temperature rises to 2500 K . The gas expands adiabatically against a constant pressure of $2 \times 10^{5} \mathrm{~Pa}$ until the volume is 0.3 L again. Assume Cp is $33 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. What are $\mathrm{w}, \mathrm{q}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the gas during this process? [NOTE if you have no answer for part (a) you may assume the initial volume here is 0.1 L. This is not the true initial volume]
a)

$$
\begin{aligned}
& n=\frac{p V}{R T}=\frac{10^{5} \mathrm{~Pa}_{2} \times 3 \times 10^{-4} \mathrm{~m}^{3}}{8.314 \mathrm{JKmal}^{-1} \times 350 \mathrm{~K}}=0.0103 \mathrm{mal} \\
& \gamma=c_{p} / c_{v}=30 /(30-8: 314)=1.383 \\
& P_{1} v_{1}^{\gamma}=\rho_{2} v_{2}^{\gamma} \quad \therefore \quad\left(\frac{v_{2}}{v_{1}}\right)^{\gamma}=\frac{P_{1}}{\rho_{2}}=0.1 \quad \therefore \gamma \ln \left(\frac{N_{2}}{v_{1}}\right)=\ln 0.1=-2.303 \\
& \therefore \frac{v_{2}}{v_{1}}=0.1892 \therefore v_{2}=5.676 \times 10^{-5} \mathrm{~m}^{3} . \\
& T=\frac{R V}{n R}=\frac{10^{6} \times 5.676 \times 10^{5}}{0.0103 \times 8.314} K=663 \mathrm{~K} . \\
& \Delta H=n C_{p} \Delta T=0.0103 \times 30 \times(663-350) \mathrm{J}=96.7 \mathrm{~J} . \\
& \Delta U={ }^{\prime} C_{V} \Delta T=0.0103 \times(30-8.314)+\Delta T=69.9 \mathrm{~J} . \\
& =q+\omega \text { and } q=0 \text { so } \omega=69.9 \mathrm{~J} \text {. }
\end{aligned}
$$

6) Constr. Per so $\omega=-\operatorname{Pex} \Delta V=-2+10^{5} \operatorname{Pan}\left(3 \times 10^{-t}-5.676 \times 10^{5}\right)^{7}$ $=-48.6 \mathrm{~J}$
$=\Delta u$ became $q=0$.

$$
\begin{aligned}
& \Delta U={ }^{n} C_{V} \Delta T=0.0103 \times(33-8.314) \Delta T \text { so } \Delta T=-191 \mathrm{~K} . \\
& \Delta H={ }^{\Delta}, \Delta T=0.0103 \times(33) \times-191 \mathrm{~J}=-64.9 \mathrm{~J} .
\end{aligned}
$$

(3) 30 points

At $298 \mathrm{~K}, 0.1 \mathrm{~mol}$ of $\mathrm{CO}(\mathrm{g})$ is burned in excess O_{2} to make $\mathrm{CO}_{2}(\mathrm{~g})$ inside a sealed, rigid calorimeter, and 25 kJ of heat is given off.
(a) Calculate the molar $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ of combustion of $\mathrm{CO}(\mathrm{g})$ at 298 K .
(b) Given that the enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ is $-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$, find the 298 K molar $\Delta \mathrm{H}$ for

$$
\mathrm{C}(\mathrm{gr})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})-\mathrm{CO}(\mathrm{~g})
$$

(c) Cp for $\mathrm{C}, \mathrm{O}_{2}$ and CO_{2} may be expressed in the form $\mathrm{a}+\mathrm{bT}+\mathrm{c} / \mathrm{T}^{2}$ with the coefficients in the table. Use these data to deduce $\Delta_{\mathrm{f}} \mathrm{H}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ at 3000 K .

species	a	b	c
C	8.5	0	0
O_{2}	30.0	4.2×10^{-3}	-1.7×10^{5}
CO_{2}	44.2	8.8×10^{-3}	-8.6×10^{5}

a)

$$
\begin{aligned}
& \Delta U=\frac{q_{v}}{n}=\frac{-25 \mathrm{~kJ}}{0.1 \mathrm{md}}=-250 \mathrm{~kJ} \mathrm{mal}^{\mathrm{m}} . \\
& \left(\mathrm{O}+\mathrm{O}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(9)\right. \\
& H=U \text { hpV so } \Delta H=\Delta U+\Delta(V)=\Delta U+\Delta(n R T) \\
& =\Delta v+R T \Delta n g a s \cdot \Delta n_{g a s}=-\frac{1}{2} \\
& =\Delta U-\frac{1}{2} R T=-2 J \cdot 2 \mathrm{~kJ} \mathrm{mal}^{-1} \text {. }
\end{aligned}
$$

b) Hess say de

$$
\begin{aligned}
& \mathrm{cto}_{2} \xrightarrow{x} \mathrm{co}^{+} \frac{1}{2} 0_{2} \\
& x=-148.0 \mathrm{co}_{2} \\
& x \mathrm{kmol}^{2} .
\end{aligned}
$$

c) CO_{2} 's firmed by $\mathrm{CHO}_{2} \rightarrow \mathrm{CO}_{2}$

$$
\begin{aligned}
\Delta C_{p} & =(44.2-30.0-8.5)+(8.8-4.2) \times 10^{-3} T+(-8.6+1.7) \times 10^{5} / T^{2} \\
& =6.7+46 \times 10^{-3} T-6.9 \times 10^{5} / T^{2} \\
\Delta H_{3000} & =\Delta H_{298}+\int_{20.8}^{3005} \Delta C_{p} d T \\
& =\Delta H_{298}+\left[5.7 T+4.6 \times 10^{-3} \frac{T^{2}}{2}+\frac{69910^{5}}{T}\right]_{298}^{3000} \\
& =\Delta H_{298}+(15400+20496-2085) \mathrm{Jmol}^{-1} \\
& =\Delta H_{298}+33.8 \mathrm{~kJ} \mathrm{mal}-1 \\
& =-366.2 \mathrm{~kJ} \mathrm{mal}{ }^{-1} .
\end{aligned}
$$

