EXAM 3
9 November 1999

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a brief justification or explanation.
Give units for all quantities!

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{nR} \quad \mathrm{dU}=\mathrm{dq}+\mathrm{dw} \quad \mathrm{dS}=\mathrm{dq} / \mathrm{T} \quad \mathrm{H}=\mathrm{U}+\mathrm{pV} \quad \mathrm{G}=\mathrm{H}-\mathrm{TS} \quad \mathrm{~A}=\mathrm{U}-\mathrm{TS} \\
& \text { Crouton's constant }=85 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

(1) 25 points
i) Starting with an expression for the differential of A , derive the result $(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=(\partial \mathrm{S} / \partial \mathrm{V})_{\mathrm{T}}$.
ii) Use this result to find ΔS for the isothermal expansion of 1 mol of a real gas from V_{1} to V_{2}, where the equation of state is $\mathrm{pV}^{\mathrm{x}}=\mathrm{RT}$ where x is a constant $(\mathrm{x} \neq 1)$.

$$
\begin{aligned}
d A=d U-T d S-S d T & =(T d S-P d V)-T d S-S d T \\
& =-P d V-S d T \\
d s o d A & =\left(\frac{\partial A}{\partial V}\right)_{T} d V+\left(\frac{\partial A}{\partial T}\right)_{V}^{d T} d T-P=\left(\frac{\partial A}{\partial)_{T}}\right)_{T}-A_{1}-S-\left(\frac{\partial A}{\partial T}\right)_{V} . \\
P=R T V^{-x} \because\left(\frac{\partial P}{\partial T}\right)_{V} & =R V^{-x} . \\
\Delta S=\int_{V_{1}}^{V_{2}}\left(\frac{\partial S}{\partial V_{T}} d V=R \int_{V_{1}}^{V_{2}-x} d V\right. & =\frac{R}{1-x}\left[V^{1-x}\right]_{V_{1}}^{V_{2}} \\
& =\frac{R}{1-x}\left(V_{2}^{1-x}-V_{1}^{1-x}\right) .
\end{aligned}
$$

(2) 15 points.

An organic compound has a normal boiling point of 400 K and $\Delta_{\text {rap }} \mathrm{H}=25 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Estimate the temperature at which its vapor presssure is $10^{4} \mathrm{~Pa}$.

$$
\begin{aligned}
\ln p & =\text { cost }-\frac{\Delta_{\text {rp }} H}{R} \cdot \frac{1}{T} \\
\text { When } T & =400 \mathrm{~K}, P=10^{5} P_{a} \therefore \\
\ln 10^{5} & =\text { cont }-\frac{25000}{8.314} \cdot \frac{1}{400} \\
\therefore \text { cont } & =19.03 . \\
\ln 10^{4} & =19.03-\frac{\Delta_{\text {rap }} H}{R} \cdot \frac{1}{T} \\
\therefore 9.21 & =19.03-\frac{3007}{T} \therefore T=306 \mathrm{~K} .
\end{aligned}
$$

(3) 30 points

Consider the reaction

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Starting with pure NH_{3} at 700 K , a fraction α dissociates and the total pressure at equilibrium is 10^{5} Pa .
(i) Find the equilibrium constant K in terms of α.
(ii) The container is expanded and the total pressure drops. Qualitatively, explain briefly if you expect the following quantities to decrease, stay the same, or increase: (a) K (b) α.
i)
initial
amounts

mole
fractions

$$
2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+\quad 3 \mathrm{H}_{2}
$$

$$
n
$$

$n(1-\alpha)$
$\frac{n \alpha}{2}$

$$
\frac{1-\alpha}{1+\alpha} \quad \frac{\alpha}{2(1+\alpha)}
$$

$$
\frac{3 n \alpha}{2}
$$

$$
\text { Total }=n(1+\alpha)
$$

$$
\frac{3 x}{2(1+x)}
$$

$=$ activity in thin care, because $p / p^{*}=1$ here.

$$
\begin{gathered}
K=\frac{\alpha_{N_{2}} a_{1+2}^{3}}{a_{N H_{3}^{2}}^{2}}=\frac{\frac{\alpha}{2} \cdot\left(\frac{3 \alpha}{2}\right)^{3} \frac{1}{(1+\alpha)^{4}}}{(1-\alpha)^{2} \frac{1}{(1+\alpha)^{2}}}=\frac{27}{16} \frac{\alpha^{4}}{(1-\alpha)^{2}(1+\alpha)^{2}} \\
=\frac{27}{16} \frac{\alpha^{4}}{\left(1-\alpha^{2}\right)^{2}}=\frac{1}{16}\left(\frac{1}{\left.\alpha^{2}-1\right)^{2}}\right.
\end{gathered}
$$

ii) By le Chatalier principle: Cow $p \Rightarrow$ more desocintion became that gives wore partides is. tads to rave the pressure x goes up. K remains the same.
(4) 30 points

An equilibrium constant K is found to obey

$$
\ln \mathrm{K}=-2.7+1500 / \mathrm{T}-10^{6} / \mathrm{T}^{2}
$$

over the temperature range $250-400 \mathrm{~K}$. Calculate $\Delta \mathrm{H}$, then $\Delta \mathrm{G}$, then $\Delta \mathrm{S}$, all at 298 K . Give units.

$$
\begin{aligned}
& \frac{d \ln k}{d^{1 / T}}=\frac{-\Delta H}{R} \text {. vita } x=\frac{1}{T} \text {, so } \ln k=-2.7+1500 x-10^{6} x^{2} \text {. } \\
& \frac{d \ln K}{d^{\prime} 7}=\frac{d \ln K}{d x}=1500-2 \times 10^{6} x=1500-\frac{2 \times 0^{6}}{T}=-5211 \text { at } 298 K \\
& =-\frac{\Delta H}{R} \therefore \Delta H_{298}=+43.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {. } \\
& T=298 k \Rightarrow \text { h } k=-8.927 \text {. } \\
& \Delta G_{298}=-R T \mathrm{mK}=+22.12 \mathrm{~kJ} \mathrm{molt} . \\
& \Delta S=\frac{\Delta H-\Delta G}{T}=+71.1 \mathrm{JK}^{-1} \operatorname{mot}-1 .
\end{aligned}
$$

