EXAM 3

8 November 2001

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a <u>brief</u> justification or explanation.

Give units for all quantities!

Some data:
$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \quad 1 \text{ atm} = 101325 \text{ Pa} \quad N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1} \quad \gamma = C_p/C_v$$
 $C_p-C_v = nR \quad dU = dq + dw \quad dS = dq/T \quad H = U + pV G = H - TS$ $A = U - TS$

- (1) *35 points*
- i) Starting with an expression for the differential of G, prove that $(\partial V/\partial T)_p = -(\partial S/\partial p)_T$. Show work and any results you rely on.
- ii) Use this result to find ΔS for the isothermal expansion of 1 mol of a real gas from a pressure p_1 to p_2 , where the equation of state is pV = (R+a)T where a is a constant.

i)
$$dG = dH - TdS - SdT$$
; $dH = dU + pdV + Vdp$; $dU = dq + dw$

so $dG = TdS - pdV + pdV + Vdp - TdS - SdT$

= $Vdp - SdT$.

Consider $G(p,T)$: $dG = \begin{pmatrix} SG \\ OT \end{pmatrix} pdT + \begin{pmatrix} SG \\ OT \end{pmatrix} pdP$.

Ry comparing terms, $\begin{pmatrix} SG \\ OT \end{pmatrix} p = -S$ and $\begin{pmatrix} SG \\ OT \end{pmatrix} p = V$.

Se cond derivatives are equal; $\frac{SVG}{SD} = -\frac{SG}{SD} = -\frac{S$

(2) *35 points*

Consider the gas-phase dissociation reaction $I_2 \rightarrow 2$ I where, at 1000 K, $\Delta_f G(I \text{ atom}) = +24 \text{ kJ} \text{ mol}^{-1}$.

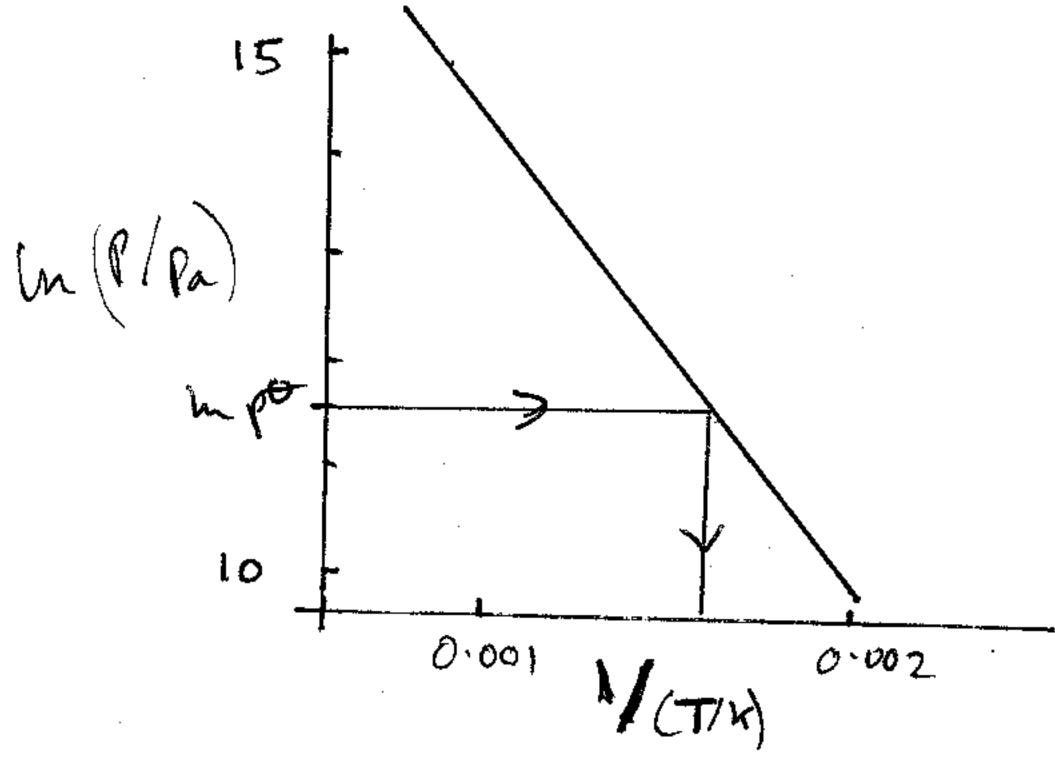
Calculate the degree of dissociation α for I_2 at 1000 K when the total equilibrium pressure is 10^4 Pa. Do not assume α is small!

For In 2I,
$$\Delta \zeta^{\Phi} = +48 \text{ kTmol}^{-1} = -RTh. k$$

-. $K = \exp \frac{-48000}{8714 \times 1000} = 3.109 \times 10^{-3}$.

initial pressure equil. pressure activity

$$K \cdot \frac{P^{6}}{P_{TOT}} = 3.109 \times 10^{3} \times 10^{5} R = 0.03109 = \frac{42}{1-2}$$
 where $x = \alpha^{2}$


$$\frac{10^{4}R}{10^{4}R} = 0.007713 \quad 50 \quad \alpha = \sqrt{5}x = 0.0878$$

If you prefer to use mule fructions,

$$K = \frac{4a^2}{(1+a)^2} \frac{p^2}{p^2}$$
. $\frac{pot}{pot} \frac{ta}{1-a^2} = \frac{4a^2}{1-a^2} \frac{pot}{pot}$ as before

(3) *30 points*

Here is a plot of ln p vs 1/T where p is vapor pressure of a liquid (in Pa). Derive the boiling temperature, and enthalpy and entropy of vaporization from this graph. *Show work*. You may assume these quantities do not vary with temperature.

The boiling temp T_f is when $p = p\Phi = 10^5 Pa$: ln p = 11.51. From the graph, $\frac{1}{6} \approx 0.0016$: $T_f \approx 625 K$.

Clausius-Clapeyron tells us dup = - DrapH

d'T

R

Slope = -5 - 5000 K from the plot = - DrapH --- DrapH = 42 KT molt.

At Tt, 0= DG = DH-TOS: DS = OH = 67 JK'mot'.