EXAM 4
30 November 2000

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a brief justification or explanation.
Give units for all quantities!
YOUR NAME \qquad

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$ $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{nR} \quad \mathrm{dU}=\mathrm{dq}+\mathrm{dw} \quad \mathrm{dS}=\mathrm{dq} / \mathrm{T} \quad \mathrm{H}=\mathrm{U}+\mathrm{pV} \quad \mathrm{G}=\mathrm{H}-\mathrm{TS} \quad \mathrm{A}=\mathrm{U}-\mathrm{TS}$ Trouton's constant $=85 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(1) 33 points

Consider the reaction $\quad 2 \mathrm{~A} \rightarrow \mathrm{~B} \quad$ with rate law $\mathrm{v}=\mathrm{k}[\mathrm{A}]^{3}$.
i) What is the order of the reaction?
ii) Assuming there is initially pure A with concentration [A] , find the concentration of A at a general time t.
iii) Derive an expression for the half life in terms of k and $[\mathrm{A}]_{0}$.
i) Third order.
ii)

$$
\begin{aligned}
& v=\frac{-1}{2} \frac{d[A]}{d t}=k[A]^{3} \therefore \frac{d[A]}{d t}=-2 k[A]^{3} \\
& \therefore\left[[A]^{-3} d[A]=-2 k t+\text { cont }=-\frac{1}{2}[A]^{-2}\right. \\
& t=0,[A]=[A]_{0} \therefore \text { const, }=-\frac{1}{2}[A]_{0}^{-2} \\
& \therefore[A]^{-2}=4 k t+[A]_{0}^{-2} \therefore[A]=\frac{1}{\sqrt{4 k t+[A]_{0}^{-2}}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
t=t_{1 / 2} \text { when }[A]=[A]_{0} / 2 & \therefore-\frac{1}{2}\left(\frac{[A]_{0}}{2}\right)^{-2}=-2 k t_{1 / 2}-1 / 2[A]_{0}^{-2} \\
& \therefore \frac{4}{[A]_{0}^{2}} \frac{-1}{[A]^{2}}=4 k t_{1 / 2} \\
& \therefore t_{1 / 2}=\frac{1}{4 k} \cdot \frac{3}{[A]_{0}^{2}}
\end{aligned}
$$

(2) 33 points.

Here is an Arrhenius plot for a reaction. Find the Arrhenius parameters.

$$
\begin{aligned}
& \text { Slope }=-\frac{E_{a}}{R}=\frac{-22+30}{0.0030-0.0038 K^{-1}}=-10000 \mathrm{~K} \\
& \therefore E_{a}=83.14 \mathrm{kJmol}^{-1} \text {. } \\
& \ln K=\ln A-\frac{E_{a}}{R T} \\
& \therefore-22=\ln A-10000 \times 0.0030 \\
& =\ln A-30
\end{aligned}
$$

$$
\therefore \ln A=8 \quad \therefore \quad A=e^{8} s^{-1} M^{-1}=2980 \mathrm{M}^{-1} s^{-1} .
$$

(3) 34 points

Here is a possible mechanism for the global gas-phase reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$:

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{5}-\mathrm{NO}_{2}+\mathrm{NO}_{3} & \text { rate constant } \mathrm{k}_{1} \\
\mathrm{NO}_{2}+\mathrm{NO}_{3}-\mathrm{N}_{2} \mathrm{O}_{5} & \text { rate constant } \mathrm{k}_{1} \\
\mathrm{NO}_{2}+\mathrm{NO}_{3}-\mathrm{NO}_{2}+\mathrm{NO}+\mathrm{O}_{2} & \text { rate constant } k_{2} \\
\mathrm{NO}+\mathrm{N}_{2} \mathrm{O}_{5}-3 \mathrm{NO}_{2} & \text { rate constant } k_{3}
\end{array}
$$

Assuming that the concentrations of NO and NO_{3} are in steady state, find the rate law implied by the mechanism in terms of elementary rate constants and concentrations of major species.

$$
\begin{aligned}
& 0=\frac{d[\mathrm{NO}]}{d t}=k_{2}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]-k_{3}\left[\mathrm{NO}^{2}\right]\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \\
& 0=\frac{d\left[\mathrm{NO}_{3}\right]}{d t}=k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]-k_{-1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]-k_{2}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right] \\
& \therefore k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]=\left(k-k_{2}\right)\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right] \\
& \therefore\left[\mathrm{NO}_{3}\right]=\frac{k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\left(k_{-1}+k_{2}\right)\left[\mathrm{NO}_{2}\right]} \\
& v=\text { rate of reaction }= \frac{d\left[\mathrm{O}_{2}\right]}{d t}=k_{2}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]=\frac{k_{2} k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\left(k_{-1}+k_{2}\right)}
\end{aligned}
$$

Albernabively, $V=\frac{-d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]-k_{-1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]$ $+k_{3}\left[\mathrm{NO}_{3}\right]\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$

$$
\begin{aligned}
& =\left[N_{2} O_{5}\right]\left\{k_{1}-k_{-1} \frac{k_{1}}{\left(k_{-1}+k_{2}\right)}+\frac{k_{2} k_{1}}{\left(k_{-1}+k_{2}\right)}\right\} \\
& =\left[N_{2} O_{5}\right]\left\{\frac{k_{1}\left(k_{-1}+k_{2}\right)-k_{-1} k_{1}+k_{2} k_{1}}{k_{1+}+k_{2}}\right\}
\end{aligned}
$$

which is the same as above.

