EXAM 4
December 3, 2004

IMPORTANT: Write clearly and neatly. Make sure that you give some reasoning or working for each answer. Full marks will NOT be awarded for the final answer by itself, UNLESS it is supported by a briefjustification or explanation.
Give units for all quantities!

YOUR NAME SOLUTIONS

Some data: $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
(1) 34 points

A possible mechanism for the formation of phosgene from carbon monoxide and chlorine, overall reaction $\mathrm{Cl}_{2}+\mathrm{CO} \rightarrow \mathrm{COCl}_{2}$, is as follows:

$$
\begin{array}{ll}
\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot & \text { rate constant } \mathrm{k}_{1} \\
\mathrm{Cl}+\mathrm{CO} \rightarrow \mathrm{ClCO} & \text { rate constant } \mathrm{k}_{2} \\
\mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl}_{2} & \text { rate constant } \mathrm{k}_{3} \\
\mathrm{Cl}_{2}+\mathrm{ClCO}^{\circ} \rightarrow \mathrm{Cl}+\mathrm{COCl}_{2} & \text { rate constant } \mathrm{k}_{4}
\end{array}
$$

Derive the rate law for this chain reaction, and deduce the overall order of reaction. Be sure to explain your work.
Assume standy-state for the radical intermediates

$$
\begin{align*}
& 0=\frac{d[\mathrm{cl}]}{d t}=2 k_{1}\left[\mathrm{Cl}_{2}\right]-b_{2}[\mathrm{Cl}][\mathrm{CO}]-2 k_{5}\left[\mathrm{Cl}^{2}+k_{4}\left[\mathrm{Cl}_{2}\right][\mathrm{clco}]\right. \text { (i) } \\
& \left.0=\frac{d[C l C o]}{d t}=k_{2}[C l][C 0]-k_{4}\left[C_{2}\right][\mathrm{Clc}]\right] \tag{ii}\\
& \text { Add (i) and (ii): } \quad 2 k_{1}\left[C_{2}\right]-2 k_{3}[C]^{2}=0 \\
& \begin{array}{l}
\therefore[\mathrm{Cl}]=\sqrt{\frac{k_{1}}{h_{3}}}\left[\mathrm{~cd}_{2}\right]^{1 / 2} \\
\frac{\left[\mathrm{cocl}_{2}\right]}{d t}=k_{4}\left[\mathrm{~cd}_{2}\right][c \operatorname{ll} 0]
\end{array} \\
& \text { rate } v=\frac{d\left[\operatorname{cocl}_{2}\right]}{d t}=k_{4}\left[\operatorname{ci}_{2}\right][c<l a] \\
& \text { mande } G_{y}(n)=k_{2}[C l][C O] \\
& =k_{2} \sqrt{\frac{k_{1}}{k_{3}}}\left[(0)\left[\mathrm{Cl}_{2}\right]^{1 / 2}\right. \\
& \text { areal crow }=1+1 / 2=3 / 2 \text {. }
\end{align*}
$$

(2) 33 points.

A reaction is measured to have a rate constant of $20 \mathrm{~s}^{-1}$ at 298 K , and $100 \mathrm{~s}^{-1}$ at 350 K . Assuming Arrhenius behavior, derive the Arrhenius parameters and predict the rate constant at 400 K . What is the reaction order?

Arrhenius eqn. $k=A e^{-\frac{E a}{R T}}$

$$
\begin{aligned}
& \text { so } \ln k=l A-\frac{E_{a}}{k} \cdot \frac{1}{T} \\
& \therefore \ln \left(\frac{k_{1}}{h_{2}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \therefore \quad \ln \left(\frac{20}{100}\right)=\frac{E_{a}}{R}\left(\frac{1}{350}-\frac{1}{200}\right) \\
& \begin{array}{l}
\therefore \frac{E_{a}}{}=\frac{26.84 k J}{} 12 e^{-1} \frac{26340}{214 \times 298}
\end{array} \\
& \therefore A=1.01 \times 10^{6} \mathrm{~s}^{-1} . \\
& k_{400 k}=1.01 \times 10^{6} 5^{-1} \times e^{-\frac{26840}{8.214 \times 400}} \\
& =\underline{3165}
\end{aligned}
$$

Units of 5^{-1} indicate a fruct-order reaction.
(3) 33 points

The reaction $2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \mathrm{C}+2 \mathrm{D}$ is found to be 4 th order in A and zero order in B .
a) Write out the rate law to show the reaction rate v in terms of concentrations (no work needed for this step).
b) Through consideration of $d[A] / d t$, integrate this rate law and find the half-life $t_{1 / 2}$ of A. You may assume that initially the concentration of A is $[\mathrm{A}]_{0}$ and that of B is $[\mathrm{B}]_{0}$.
a) $v=-\frac{1}{2} \frac{d C A}{d t}$ (or $-\frac{1}{3} \frac{d[C D}{d t}$ or $\left.\frac{d[C]}{d t}=\frac{1}{2} \frac{d[D]}{d t}\right)$.
θ

$$
\begin{aligned}
& v=k[A]^{4}[B]^{0}=k[A]^{4} \\
& \therefore \frac{d[A}{d t}=-2 k[A]^{4} \therefore \quad \int(A]^{-4} d[A]=\int-2 k d t
\end{aligned}
$$

$$
\left.\therefore \quad-\frac{1}{3} C A\right]^{-3}=-2 k t+\text { cont. }
$$

Sulubetate $t=0$: coact $=-\frac{1}{3}[A]_{0}^{-3}$

$$
\therefore \quad \frac{1}{3}[A]^{-3}=2 k t+\frac{1}{3}[A]_{0}^{-3} \text {. }
$$

$t-1 / 2$ is whine $[A]$ has become $[A]_{0} / 2$, so

$$
\begin{aligned}
& \frac{1}{3}\left(\frac{[A]_{0}}{2}\right)^{-3}=2 h t_{1 / 2}+\frac{1}{3}[A]_{0}^{-3} \\
\therefore t x_{2} & =\frac{1}{6 k}\left\{\frac{2^{3}}{[A]_{0}^{3}}-\frac{1}{[A]_{0}^{3}}\right\}=\frac{1}{6 k} \cdot \frac{7}{[A]_{0}^{3}}
\end{aligned}
$$

