Constants: \(h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} \), \(c = 3.00 \times 10^8 \text{ m/s} \), \(N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \)

Conversion Factors:

Molar Masses: \(\text{CH}_3\text{OH} - 32 \), \(\text{Cl}_2 - 71 \).
MULTIPLE CHOICE (Circle the ONE correct answer)

1. From the following thermochemical equations,
 \[2 \text{H}_2\text{O}(g) \rightarrow 2 \text{H}_2(g) + \text{O}_2(g) \quad \Delta H = +484 \text{ kJ} \]
 \[2 \text{O}_3(g) \rightarrow 3 \text{O}_2(g) \quad \Delta H = +286 \text{ kJ} \]
 \[\Delta H \text{ for the reaction, } 3 \text{H}_2(g) + \text{O}_3(g) \rightarrow 3 \text{H}_2\text{O}(g), \] is
 (A) -583 kJ (B) -341 kJ (C) +583 kJ (D) +869 kJ

2. \(\Delta H \) for the combustion (reaction with \(\text{O}_2 \)) of 2 (two) moles of propane, \(\text{C}_3\text{H}_8 \), to form \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) is -4446 kJ. From this information and the enthalpies of formation of \(\text{CO}_2 \) (-394 kJ/mol), and \(\text{H}_2\text{O} \) (-286 kJ/mol), what is the Enthalpy of Formation of propane?
 (A) +103 kJ/mol (B) -206 kJ/mol (C) -103 kJ/mol
 (D) Additional data is required

3. The Fuel Value of methanol, \(\text{CH}_3\text{OH} \), is 23 kJ/g. Therefore, \(\Delta H \) for combusting 4 (four) moles of methanol in \(\text{O}_2 \) is approximately:
 (A) -2940 kJ (B) +92 kJ (C) -2200 kJ
 (D) +2940 kJ

4. The \(\text{O}=\text{O} \) Bond Strength (aka Bond Enthalpy) in \(\text{O}_2 \) is 495 kJ/mol. What is the frequency of light with just enough energy to break an \(\text{O}=\text{O} \) bond?
 (A) 7.5x10^{38} \text{ s}^{-1} (B) 1.2x10^{18} \text{ s}^{-1} (C) 240 nm (D) 1.2x10^{15} \text{ s}^{-1}

5. A laser with a wavelength of 460 nm is emitting energy at a rate of 0.10 J/s. Approximately how many photons of radiation will have been emitted in 30 minutes?
 (A) 2.8x10^{20} (B) 4.2x10^{20} (C) 2.6x10^{22} (D) 9.5x10^{20}

6. Which of the following sets of quantum numbers is/are NOT allowed for an electron in a hydrogen atom?
 (1) \(n = 4, \ell = 3, m_l = -3, m_s = -\frac{1}{2} \) (2) \(n = 3, \ell = 3, m_l = 0, m_s = +\frac{1}{2} \)
 (3) \(n = 5, \ell = 1, m_l = -1, m_s = -\frac{1}{2} \) (4) \(n = 3, \ell = -2, m_l = 0, m_s = -\frac{1}{2} \)
 (A) 2 & 3 (B) 1 & 2 & 4 (C) 2 & 4 (D) 3 & 4

7. What is the total number of electrons that can be contained in the third shell \((n = 3)\) of an atom?
 (A) 16 (B) 9 (C) 32 (D) 18
8. The complete electron configuration of the Cr$^{3+}$ ion is:
(A) $1s^22s^22p^63s^23p^64s^23d^7$
(B) $1s^22s^22p^63s^23p^64s^23d^1$
(C) $1s^22s^22p^63s^23p^63d^3$
(D) $1s^22s^22p^63s^23p^63d^3$

9. Of the four atoms, S, P, Si, and Mg, ____ has the least unpaired electrons and ____ has the most unpaired electrons.
(A) Mg, Si
(B) Mg, P
(C) Na, Si
(D) Na, P

10. Rank the following atoms in order of decreasing First Ionization Energy?
Ca, Sr, Rb, Ge
(A) Rb > Sr > Ca > Ge
(B) Ge > Ca > Sr > Rb
(C) Rb > Ge > Ca > Sr
(D) Ge > Ca > Rb > Sr

11. Of the four atoms, Sb, Pb, Cl, Se, ____ has the largest radius and ____ has the largest First Ionization Energy.
(A) Pb, Cl
(B) Sb, Cl
(C) Pb, Se
(D) Cl, Pb

12. Which atom would have a sixth ionization energy very much greater than the fifth ionization energy?
(A) P
(B) Al
(C) S
(D) Si

13. The Electron Affinity of an atom is defined as the energy change for which one of the following processes?
(A) $M \rightarrow M^+ + e^-$
(B) $X \rightarrow X^+ + e^-$
(C) $X + e^- \rightarrow X^-$
(D) $X^+ + e^- \rightarrow X$

14. The total number of lone pairs of electrons in the PS$^{-1}$ ion is/are:
(A) 0
(B) 2
(C) 3
(D) 4

15. What is the Sb-O bond order in the SbO$_2$$^{+1}$ ion?
(A) 1.0
(B) 1.50
(C) 2.0
(D) 3.0

16. The number of lone pairs of electrons around the central atom in XeBr$_3$$^{-1}$ ion is:
(A) 1
(B) 3
(C) 2
(D) 4

17. In the AsP\equivS molecule (Lewis Structure on right), the formal charges on P and S are:
(A) P: +1, S: -1
(B) P: -1, S: +1
(C) P: 0, S: -1
(D) P: 0, S: +1
18. Which of the following molecules do not obey the octet rule? NO₂, GeBr₄, TeCl₃⁻¹
 (A) NO₂ & GeBr₄ (B) NO₂ (C) TeCl₃⁻¹ (D) NO₂ & TeCl₃⁻¹

19. For the transition metal complex, Fe(CO)ₙ(CH₃)₂, use the 18 electron rule to determine n, the number of CO ligands in the complex.

 Note: The CO ligand contributes two (2) electrons to the metal and the CH₃ ligand contributes one (1) electron to the metal.

 (A) n = 2 (B) n = 4 (C) n = 5 (D) n = 3

20. In the molecule with the condensed structural formula, CH₃CBrNH, the carbon-nitrogen bond order is _____ and the number of lone pairs (i.e. non-bonding pairs) of electrons on the nitrogen atom is _____.

 (A) 1 , 1 (B) 2 , 2 (C) 2 , 1 (D) 1 , 2

21. What are the C-N and C-O Bond Orders in the ion with the condensed structural formula, CH₃CH(CN)C(O)O⁻¹?

 (A) 3 , 1.5 (B) 3 , 2 (C) 3 , 1 (D) 2 , 1.5

Two (2) Problems: #1 directly below on this page

1. Write the Condensed Electron Configuration of Polonium (Po, Z = 84).

2. Consider the photodissociation of Chlorine (Cl₂) in the upper atmosphere:
 Cl₂(g) + hν → 2 Cl(g).

 A sample of Cl₂(g) is irradiated with light having a wavelength of 345 nm from a 60 Watt (W = J/s) lamp. Assuming that 100% of the photons are absorbed, how many hours will it take to decompose 142 grams of Cl₂(g)?
CHEM 1413.001 - Exam 4 – November 30, 2016 - Version B

Constants:
\[h = 6.63 \times 10^{-34} \text{ Js} \]
\[c = 3.00 \times 10^8 \text{ m/s} \]
\[N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \]

Conversion Factors:

Molar Masses:
\[\text{CH}_3\text{OH} - 32. \quad \text{Cl}_2 - 71. \]
MULTIPLE CHOICE (Circle the ONE correct answer)

1. The Fuel Value of methanol, CH₃OH, is 23 kJ/g. Therefore, ∆H for combusting 4 (four) moles of methanol in O₂ is approximately:
 (A) +2940 kJ (B) +92 kJ (C) -2200 kJ (D) -2940 kJ

2. ∆H for the combustion (reaction with O₂) of 2 (two) moles of propane, C₃H₈, to form CO₂ and H₂O is -4446. kJ. From this information and the enthalpies of formation of CO₂ (-394 kJ/mol), and H₂O (-286 kJ/mol), what is the Enthalpy of Formation of propane?
 (A) -103 kJ/mol (B) -206 kJ/mol (C) +103 kJ/mol (D) Additional data is required

3. From the following thermochemical equations,

 \[2 \text{H}_2\text{O}(g) \rightarrow 2 \text{H}_2(g) + \text{O}_2(g) \quad \Delta H = +484 \text{ kJ} \]

 \[2 \text{O}_3(g) \rightarrow 3 \text{O}_2(g) \quad \Delta H = +286 \text{ kJ} \]

 ∆H for the reaction, 3 H₂(g) + O₃(g) → 3 H₂O(g), is
 (A) +583 kJ (B) -341 kJ (C) -583 kJ (D) +869 kJ

4. The O=O Bond Strength (aka Bond Enthalpy) in O₂ is 495 kJ/mol. What is the frequency of light with just enough energy to break an O=O bond?
 (A) 7.5x10³⁸ s⁻¹ (B) 1.2x10¹⁵ s⁻¹ (C) 240 nm (D) 1.2x10¹⁸ s⁻¹

5. What is the total number of electrons that can be contained in the third shell (n = 3) of an atom?
 (A) 18 (B) 16 (C) 32 (D) 9

6. A laser with a wavelength of 460 nm is emitting energy at a rate of 0.10 J/s. Approximately how many photons of radiation will have been emitted in 30 minutes?
 (A) 4.2x10²⁰ (B) 2.8x10²⁰ (C) 2.6x10²² (D) 9.5x10²⁰

7. Which of the following sets of quantum numbers is/are NOT allowed for an electron in a hydrogen atom?
 (1) n = 4, ℓ = 3, mᵢ = -3, mₛ = -½ (2) n = 3, ℓ = 3, mᵢ = 0, mₛ = +½
 (3) n = 5, ℓ = 1, mᵢ = -1, mₛ = -½ (4) n = 3, ℓ = -2, mᵢ = 0, mₛ = -½
 (A) 2 & 3 (B) 1 & 2 & 4 (C) 3 & 4 (D) 2 & 4
8. Rank the following atoms in order of decreasing First Ionization Energy? Ca, Sr, Rb, Ge
 (A) Rb > Sr > Ca > Ge (B) Ge > Ca > Rb > Sr
 (C) Rb > Ge > Ca > Sr (D) Ge > Ca > Sr > Rb

9. Of the four atoms, Sb, Pb, Cl, Se, ____ has the largest radius and ____ has the largest First Ionization Energy.
 (A) Cl, Pb (B) Sb, Cl (C) Pb, Cl (D) Pb, Se

10. Of the four atoms, S, P, Si, and Mg, ____ has the least unpaired electrons and ____ has the most unpaired electrons.
 (A) Mg, Si (B) Na, P (C) Na, Si (D) Mg, P

11. The complete electron configuration of the Cr\(^{3+}\) ion is:
 (A) 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^7\) (B) 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^1\)
 (C) 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)3d\(^3\) (D) 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4p\(^3\)

12. Which atom would have a sixth ionization energy very much greater than the fifth ionization energy?
 (A) Si (B) Al (C) S (D) P

13. The Electron Affinity of an atom is defined as the energy change for which one of the following processes?
 (A) M \(\rightarrow\) M\(^+\) + e\(^-\) (B) X \(\rightarrow\) X\(^+\) + e\(^-\)
 (C) X\(^+\) + e\(^-\) \(\rightarrow\) X (D) X + e\(^-\) \(\rightarrow\) X\(^-\)

14. What is the Sb-O bond order in the SbO\(^{2+}\) ion?
 (A) 1.0 (B) 2.0 (C) 1.50 (D) 3.0

15. The total number of lone pairs of electrons in the PS\(^{-1}\) ion is/are:
 (A) 4 (B) 0 (C) 3 (D) 2

16. The number of lone pairs of electrons around the central atom in XeBr\(^{3-}\) ion is:
 (A) 1 (B) 2 (C) 3 (D) 4

17. In the AsPS molecule (Lewis Structure on right), the formal charges on P and S are:
 \[\text{As} \equiv P \equiv S: \]
 (A) P: 0, S: -1 (B) P: -1, S: +1 (C) P: +1, S: -1 (D) P: 0, S: +1
18. For the transition metal complex, Fe(CO)$_n$(CH$_3$)$_2$, use the 18 electron rule to determine n, the number of CO ligands in the complex.

Note: The CO ligand contributes two (2) electrons to the metal and the CH$_3$ ligand contributes one (1) electron to the metal.

(A) $n = 2$
(B) $n = 4$
(C) $n = 5$
(D) $n = 3$

19. Which of the following molecules do **not** obey the octet rule? NO$_2$, GeBr$_4$, TeCl$_3$\(^{-1}\)

(A) NO$_2$ & TeCl$_3$\(^{-1}\)
(B) NO$_2$
(C) TeCl$_3$\(^{-1}\)
(D) NO$_2$ & GeBr$_4$

20. What are the C-N and C-O Bond Orders in the ion with the condensed structural formula, CH$_3$CH(CN)C(O)O\(^{-1}\) ?

(A) 2 , 1.5
(B) 3 , 2
(C) 3 , 1.5
(D) 3 , 1

21. In the molecule with the condensed structural formula, CH$_3$CBrNH, the carbon-nitrogen bond order is _____ and the number of lone pairs (i.e. non-bonding pairs) of electrons on the nitrogen atom is _____.

(A) 1 , 1
(B) 2 , 2
(C) 2 , 1
(D) 1 , 2

Two (2) Problems: #1 directly below on this page

(4) 1. Write the **Condensed Electron Configuration** of Polonium (Po, Z = 84).

(12) 2. Consider the photodissociation of Chlorine (Cl$_2$) in the upper atmosphere: Cl$_2$(g) + hν \rightarrow 2 Cl(g).

A sample of Cl$_2$(g) is irradiated with light having a wavelength of 345 nm from a 65 Watt (W = J/s) lamp. Assuming that 100% of the photons are absorbed, how many **hours** will it take to decompose 142 grams of Cl$_2$(g) ?