Chap. 16 - Jan. 17

Slide #21

Consider the reaction, 2 NO(g) + $Cl_2(g) \rightarrow 2$ NOCI(g). The rate law is: $R = k[NO]^m[Cl_2]^n$

Use the initial rate data below to determine m, n and k

Expt.	[NO]	$[Cl_2]_0$	R	
#1	0.01 M	0.02 M	° 4.10x10 ⁻⁵	M e -1
#2	0.04	0.02	6.56x10 ⁻⁴	IVI S
#3	0.01	0.06	1.23x10 ⁻⁴	
	D /6) Pr 2	Krozi Ksnozi	Salar Salar,	
		[N93-	/ Chr	
	of S	Q- 6.5 u	6×10====================================	50,81 (0,02)
		$\int M =$	2	

Compar (192 1,23 ×10 2 (50,06] 1 4,1×10 50,07] 3,0 = 3.0 N=1 Sxp1 Po,= 25, No], [Clos] L= 5007 5002 (0.07m) (0.07m) 220.5 m s-1 220.5 m s-1

Consider a Second Order reaction, A → Products.

The initial concentration of [A] is 0.50 M, and the concentration decreases to 0.30 M after 150 s. Calculate the following quantities:

(A) The rate constant, k $[M_0 = 0.30 \text{ M}]$ $[M_0] = 0.30 \text{ M}$ $[M_0] = 0.30 \text{$

Consider a Second Order reaction, A → Products.

The initial concentration of [A] is 0.50 M, and the concentration decreases to 0.30 M after 150 s. Calculate the following quantities:

(B) The concentration, [A]t. after 250 s

1 = 4-60 + 1 ENDO = (+8.89×10 m e-1)(2005) + 1 = 4.22 m⁻¹

50,24 M

1-20.5M 1-20.5M 1-20.5M 1-20.5M 1-20.5M 1-20.5M 1-20.5M Consider a Second Order reaction, A → Products.

The initial concentration of [A] is 0.50 M, and the concentration decreases to 0.30 M after 150 s. Calculate the following quantities:

(C) The time it takes to for the concentration to decrease from [A]_o to 0.10 M

50,50M 128.89 X10 M 5 128.89 X10 M 5 128.99 X10 M 5 128.99 X10 M 5