Solutions

CHEM 1423 - Exam 1 - February 11, 2016

Constants and Equations: R = 8.31 J/mol-K

Beer-Lambert Law: $A = \log\left(\frac{I_o}{I}\right) = \varepsilon bc$

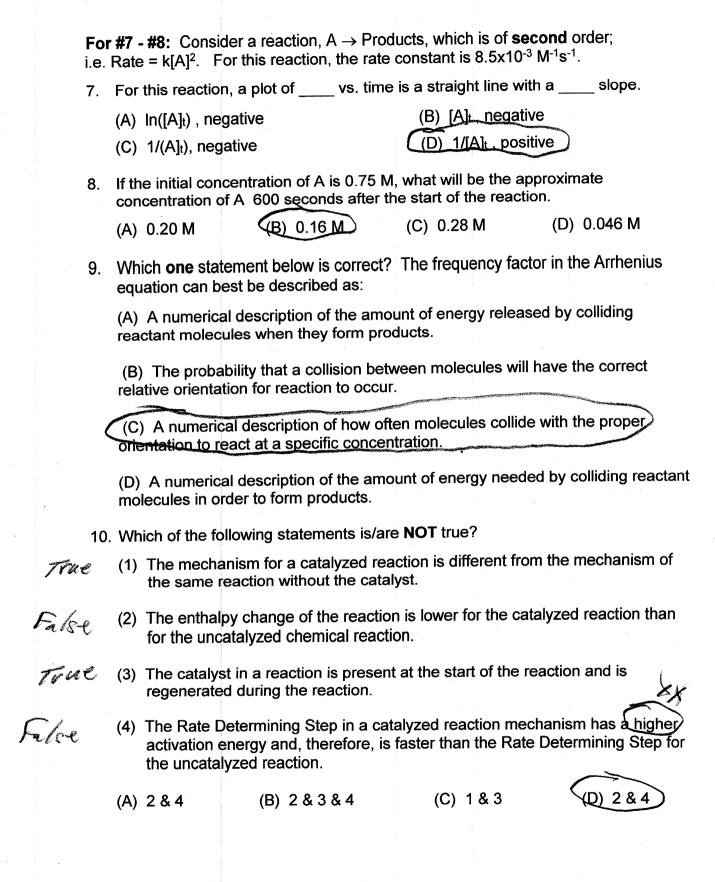
Michaelis-Menten Equation: $v_0 = \frac{V_m[S]}{K_M + [S]}$

8₹	2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A 18 38 38 38 38 38 38 38 38 38 38 38 38 38	3.80	3 6	% £ %		C. C
>		35.45 3				1, 1997	750 173.0 8 (259)
						gust K	69 168.9 101 101 (258)
		32.07		, min car comment		eva, Au	EF TM Yb 167.3 168.9 173.0 100 101 102 FM Nd NG (2557) (258) (259) 875 (259)
**	<u> </u>	33.97				Il in Gen	5 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
N		28.08 ± 20.88				Counc	
ELEMENTS	മ≣്രയ	10.8 1-3 26.98 31				U.P.A.C	65 66 1 b by 168.9 162.5 97 98 (247) (251)
					200.6 200.6		2 S S E 2 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2
PERIODIC TABLE OF THE		29 B I	03.55 83.55	Ag 107.9	79 Au 197.0	peroved	
6		2 - 8	S 58.69	P 46	85 T 28	*	63 14 152.0 4 Am (243)
三 三 三		9 All B	58.83	8 45 102.9	77 = 192.2	109 (266)	50 Sm 0 Cm
TAE					76 Os 190.2		2 P 93 (145)
<u> </u>		l	i		75 Be 2	1	060 Nd 144.2 U 238.0
S .	Atomic Number Symbol Atomic Mass		***************************************	*************	47 ¥ ≥ 183.8	ଞ୍ଚ ୍ଚ ଞ୍ଚି	8 Ç ई 2 Ç 8
Ш.	Nomic Symbol Nomic		·····		73 Fa 180.9	(2) Q (2)	57 58 Ce 138.9 140.1 89 90 AC Th 227.0 232.0
	_ T 00.1				72 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>26 92</u> 5	57 57 58.9 89 89 227.0
					3 175.0		
		8.012 N 12 24.30					
-≤	-I 👸 "J	= 8 5 65 65	¥ 9, 5	5.4.8 € 4.8	55 132.5	(223 T 87	
	~ N	6	4	10	(0)	~ 7	•

CHEM 1423 - Exam 1 - February 11, 2016

 Δ [C]/dt = +0.60 M hr⁻¹. What is the rate of change of [A], Δ [A]/dt ?

1. Consider the hypothetical reaction, $2A + B \rightarrow 3C$. If the rate of change of [C] is


Name Soluting

(B) -0.40 M hr¹

(6))) PART I.	MULTIPLE CHOIC	E (Circle the	ONE corre	ct answer)
$\cdot \cdot$	<i>,</i> , , , , , , , , , , , , , , , , , ,	==			

(A) -0.20 M hr⁻¹

		(C) -0.30 M hr	F	(D) +0.40 M hr ¹	
	2.	measured. It is the B concentra first experiment	t). If the concentrations factor of 32 (relative to	concentration of A use increases by a facts of both A and B are	used is tripled, keeping tor of 27 (relative to the re doubled, the rate
		(A) $k[A]^2[B]^3$	(B) $k[A]^2[B]^2$	(C) k[A] ³ [B]	(D) k[A] ³ [B] ²
	Fo Ra	r #3 - #4: Consi te = k[A] ⁿ . For th	der a reaction, $A \rightarrow Properties$ reaction, the following	oducts, which is of one of the original rate data w	order "n"; i.e. vas obtained.
	W	nen [A] _o = 0.20 M	I, the initial rate is 0.50	M/s	
	Wł	nen [A] _o = 0.60 M	1, the initial rate is 13.5	M/s	
	3.	The order of thi	is reaction (i.e. "n") is:		
	. ((A) +3	(B) +2	(C) +1	(D) -1
	4.	The rate consta	ant for this reaction (i.e.	"k") is:	
		(A) 313 M ⁻³ s ⁻¹	(B) 12.5 M ⁻¹ s ⁻¹	(C) 62.5 M ⁻² s ⁻¹	(D) 2.5 s ⁻¹
	5.	which is used for	cay follows first order ker myocardial imaging to into a patient, how man	ests. Its half-life is	73 hours. If 300 mg of
		(A) 124 mg	(B) 52 mg	(C) 34 mg	(D) 83 mg.
***************************************	6.	is 0.90 M, it take	order reaction, $A \rightarrow Property$ es 25 s for the concent of this reaction is ap	ration to decrease t	
		(A) 0.044 Ms ⁻¹	(B) 0.089 Ms ⁻¹	(C) 0.015 Ms ⁻¹	(D) 0.024 Ms ⁻¹

$Cd_2^{2+} \xrightarrow{\kappa} Cd + Cd^{2+}$ Fast Pre-Equilibrium
$Zr^{3+} + Cd \xrightarrow{k_2} Zr^{+} + Cd^{2+}$ Slow Rate Determining Step
An acceptable rate law for the rate, Rate = $\Delta[Zr^+]/\Delta t$, is:
(A) $Rate = k \cdot \frac{[Zr^{3+}][Cd_2^{2+}]}{[Cd]}$ (B) $Rate = k \cdot \frac{[Zr^{3+}][Cd^{+}]^2}{[Cd^{2+}]}$ (C) $Rate = k \cdot [Zr^{3+}][Cd_2^{2+}]$ (D) $Rate = k \cdot \frac{[Zr^{3+}][Cd_2^{2+}]}{[Cd^{2+}]}$
12. Consider a reaction, R → P (i.e. Reactants → Products). If the activation energy for the reverse reaction is 85 kJ//mol and the overall energy (aka enthalpy) change for the reaction is -30 kJ/mol. Therefore, the activation energy for the forward reaction is:
(A) +115 kJ/mol (B) +55 kJ/mol (C) +105 kJ/mol (D) -55 kJ/mol
13. In an enzyme catalyzed reaction, when the Substrate Concentration is much greater than the Michaelis-Constant, K _M , then the rate of the reaction is order with respect to [S]
(A) Second order (B) First Order (C) Zeroth Order (D) Indeterminate without know the values of K _M and [S].
14. In an enzyme catalyzed reaction, for what ratio, [S]/ K_M , is the initial velocity, $v_0 = 0.70 \text{ V}_m$?
(A) 1.75 (B) 0.43 (C) 2.33 (D) 3.41
15. Consider the gas phase equilibrium, $A(g) \rightleftharpoons B(g) + 3C(g)$,
K_c = 1.0x10 ⁻⁵ . 3.0 mol of A(g) is placed in a 2.0 L container and the mixture is allowed to come to equilibrium. Calculate the approximate concentration of C(g at equilibrium.
NOTE: You can assume that very little A(g) reacts to form B(g) and C(g)
(A) 8.2×10^{-2} M (B) 1.1×10^{-1} M (C) 2.7×10^{-2} M (D) 9.7×10^{-2} M
For #16 - #20 For the gas phase reaction, $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, $K_c = 120$. at 600 K. The Enthalpy change for this reaction is +95 kJ/mol
16. If a mixture is prepared with [SO ₂] = 0.4 M, [O ₂] = 0.3 M and [SO ₃] = 1.5 M, the reaction quotient is and the reaction will proceed towards the
(A) 47., Right (B) 188., Left
(C) 63., Right (D) 188., Right

11. For the reaction, $Cd_2^{2+}(aq) + Zr^{3+}(aq) \rightarrow 2 \ Cd^{2+}(aq) + Zl^{+}(aq)$, the accepted reaction mechanism is:

17. For the above reaction, if the equilibrium concentrations (at 600 K) of SO ₃ and O ₂ are 0.40 M and 0.10 M, respectively, what is the approximate equilibrium concentration of SO ₂ ?
(A) 0.12 M (B) 0.18 M (C) 0.013 M (D) 0.26 M
18. For the above equilibrium reaction, if the temperature is decreased , the ratio [SO ₂]/[SO ₃] will and K _c will
(A) decrease , increase (B) decrease , decrease
(C) increase, remain constant (D) increase, decrease
19. For the above reaction, if N ₂ (g) is added to the mixture in a container at fixed volume, the ratio [SO ₂]/[SO ₃] will and K _c will
(A) increase , decrease (B) decrease , remain constant
(C) remain constant , remain constant (D) increase , remain constant
20. What is the approximate equilibrium constant (at 600 K) for the related equilibrium, $4SO_2(g)+2O_2(g) \longleftrightarrow 4SO_3(g)$?
(A) 240 (B) 1.4×10^4 (C) 6.9×10^{-5} (D) 8.3×10^{-3}

PART II. THERE ARE FOUR (4) PROBLEMS BELOW.

a temperature of 120 °C, and 1.35x10⁵ min⁻¹ at 180 °C. Calculate the Arrhenius Activation Energy (in kJ/mol) and the Frequency Factor (in min⁻¹) for this reaction. 12, 2/5 x10 mi 人() = 一切(元) Eq = _________ = a[13040] 元· 知识 383/ = -1,335 y104R Ea = -R (-6.33 = 45/2) = 8.31 Thek (-1.33 = x0x) = 1.110 x105 The = [111. h The] luk, = d. to - Fefat) AA= has safe holds no)+ 11/4/0 (231/20) A= e41.29 = 852410 min

The measured value of the rate constant for a first order reaction is 1.50x103 min-1 at

(10) 1.

Consider a molecule, B, which reacts to form Products via First Order kinetics: (10) 2.

$$A \rightarrow P$$
 $R = -\frac{d[A]}{dt} = k[A]$

The molecule, B, absorbs visible light at 480 nm. The Molar Absorptivity for this absorption is given by $\varepsilon = 800 \text{ M}^{-1} \text{ cm}^{-1}$.

When a sample of B is prepared in a 0.5 cm cell, the Percent Transmission at the beginning of the reaction was 25%. After the reaction has run for 50 minutes, the percent transmission is 70%. Calculate the rate constant for this reaction (give the

units)

to somin 27= 70% A= 10(50) = 15/x10 M

to somin 27= 70% A= 10(50) = 10(100) = 0.185

CMC = [8] = A = 6,155 (800m) = 3,8741 M

First order: hol ATE)= - Lt + ho ([ATO)

σο Κ = ln [a] - ln[a] = ln (151x103) - ln (3.87 x104)

50 mm L= 20272 min-1

(10) 3. Consider the reaction: $Cl_2(g) + 2 NO_2(g) \rightleftharpoons 2 NOCl(g)$. If 1.50 mol of Cl₂(g) and 1.50 mol of NO₂(g) are placed in a 5.0 Liter container, which is heated to 200 °C, the equilibrium concentration of NO₂(g) is 0.120 M. Calculate the equilibrium constant, Kc, for this reaction at 200 °C. 2007= [Na7, = 45 ml = 0.30 M Calc. 1 Fails Sva] y= 0.12M=6.3-2X X 2 0, 09 W

Encor. Styll CNA 3 = 6,12 M $ECC_3 = 6.3 - x = 6.21 \text{ M}$ $ECC_3 = 2 \times = 0.18 \text{ M}$ $ECC_3 = 2 \times = 0.18 \text{ M}$ (10) 4. Consider the reaction: $H_2(g) + I_2(g) \xrightarrow{K_c} 2HI(g)$ K_c = 9.0 (at 550 K) 8.0 mol of HI(g) is placed in a 20.0 L container and heated to 550 K, where equilibrium is established.

Calculate the equilibrium concentrations (in M) of $H_2(g)$, $I_2(g)$ and HI(g)?

$$A_{i} = A_{i}$$

x= 20811

$$2 \left[(N_{1}) - (I_{2}) - \chi = 0.08M \right]$$

$$5 \left[(N_{1}) - (N_{2}) - \chi \right] = 0.40 - 2 \left[(0.08) \right]$$

$$- \left[(0.24) M \right]$$