Solutions ## CHEM 1423 - Exam 1 - February 11, 2016 Constants and Equations: R = 8.31 J/mol-K **Beer-Lambert Law:** $A = \log\left(\frac{I_o}{I}\right) = \varepsilon bc$ Michaelis-Menten Equation: $v_0 = \frac{V_m[S]}{K_M + [S]}$ | 8₹ | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A 18 38 38 38 38 38 38 38 38 38 38 38 38 38 | 3.80 | 3 6 | % £ % | | C. C | |-----------------------|--|---|---|-------------------|---|--------------------|--| | > | | 35.45 3 | | | | 1, 1997 | 750
173.0
8 (259) | | | | | | | | gust K | 69
168.9
101
101
(258) | | | | 32.07 | | , min car comment | | eva, Au | EF TM Yb 167.3 168.9 173.0 100 101 102 FM Nd NG (2557) (258) (259) 875 (259) | | ** | <u> </u> | 33.97 | | | | Il in Gen | 5 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | N | | 28.08 ± 20.88 | | | | Counc | | | ELEMENTS | മ≣്രയ | 10.8
1-3
26.98
31 | | | | U.P.A.C | 65 66
1 b by
168.9 162.5
97 98
(247) (251) | | | | | | | 200.6
200.6 | | 2 S S E 2 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 | | PERIODIC TABLE OF THE | | 29 B I | 03.55
83.55 | Ag 107.9 | 79
Au
197.0 | peroved | | | 6 | | 2 - 8 | S 58.69 | P 46 | 85 T 28 | * | 63
14 152.0
4 Am
(243) | | 三
三
三 | | 9 All B | 58.83 | 8 45 102.9 | 77
=
192.2 | 109
(266) | 50 Sm 0 Cm | | TAE | | | | | 76
Os
190.2 | | 2 P 93 (145) | | <u> </u> | | l | i | | 75
Be 2 | 1 | 060
Nd
144.2
U 238.0 | | S . | Atomic Number
Symbol
Atomic Mass | | *************************************** | ************* | 47
¥ ≥ 183.8 | ଞ୍ଚ ୍ଚ ଞ୍ଚି | 8 Ç ई 2 Ç 8 | | Ш. | Nomic
Symbol
Nomic | | ····· | | 73
Fa
180.9 | (2) Q (2) | 57 58 Ce 138.9 140.1 89 90 AC Th 227.0 232.0 | | | _ T 00.1 | | | | 72
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u>26 92</u> 5 | 57 57 58.9 89 89 227.0 | | | | | | | | | | | | | | | | 3 175.0 | | | | | | 8.012
N 12
24.30 | | | | | | | -≤ | -I 👸 "J | = 8 5 65 65 | ¥ 9, 5 | 5.4.8
€ 4.8 | 55
132.5 | (223 T 87 | | | | ~ N | 6 | 4 | 10 | (0) | ~ 7 | • | ## CHEM 1423 - Exam 1 - February 11, 2016 Δ [C]/dt = +0.60 M hr⁻¹. What is the rate of change of [A], Δ [A]/dt ? 1. Consider the hypothetical reaction, $2A + B \rightarrow 3C$. If the rate of change of [C] is Name Soluting (B) -0.40 M hr¹ | (6) |)) PART I. | MULTIPLE CHOIC | E (Circle the | ONE corre | ct answer) | |---------------|--|-----------------------|---------------|-----------|------------| | $\cdot \cdot$ | <i>,</i> , , , , , , , , , , , , , , , , , , | == | | | | (A) -0.20 M hr⁻¹ | | | (C) -0.30 M hr | F | (D) +0.40 M hr ¹ | | |---|----------|--|---|---|--| | | 2. | measured. It is
the B concentra
first experiment | t). If the concentrations
factor of 32 (relative to | concentration of A use increases by a facts of both A and B are | used is tripled, keeping
tor of 27 (relative to the
re doubled, the rate | | | | (A) $k[A]^2[B]^3$ | (B) $k[A]^2[B]^2$ | (C) k[A] ³ [B] | (D) k[A] ³ [B] ² | | | Fo
Ra | r #3 - #4: Consi
te = k[A] ⁿ . For th | der a reaction, $A \rightarrow Properties$ reaction, the following | oducts, which is of one of the original rate data w | order "n"; i.e.
vas obtained. | | | W | nen [A] _o = 0.20 M | I, the initial rate is 0.50 | M/s | | | | Wł | nen [A] _o = 0.60 M | 1, the initial rate is 13.5 | M/s | | | | 3. | The order of thi | is reaction (i.e. "n") is: | | | | | . (| (A) +3 | (B) +2 | (C) +1 | (D) -1 | | | 4. | The rate consta | ant for this reaction (i.e. | "k") is: | | | | | (A) 313 M ⁻³ s ⁻¹ | (B) 12.5 M ⁻¹ s ⁻¹ | (C) 62.5 M ⁻² s ⁻¹ | (D) 2.5 s ⁻¹ | | | 5. | which is used for | cay follows first order ker myocardial imaging to into a patient, how man | ests. Its half-life is | 73 hours. If 300 mg of | | | | (A) 124 mg | (B) 52 mg | (C) 34 mg | (D) 83 mg. | | *************************************** | 6. | is 0.90 M, it take | order reaction, $A \rightarrow Property$ es 25 s for the concent of this reaction is ap | ration to decrease t | | | | | (A) 0.044 Ms ⁻¹ | (B) 0.089 Ms ⁻¹ | (C) 0.015 Ms ⁻¹ | (D) 0.024 Ms ⁻¹ | | $Cd_2^{2+} \xrightarrow{\kappa} Cd + Cd^{2+}$ Fast Pre-Equilibrium | |--| | $Zr^{3+} + Cd \xrightarrow{k_2} Zr^{+} + Cd^{2+}$ Slow Rate Determining Step | | An acceptable rate law for the rate, Rate = $\Delta[Zr^+]/\Delta t$, is: | | (A) $Rate = k \cdot \frac{[Zr^{3+}][Cd_2^{2+}]}{[Cd]}$ (B) $Rate = k \cdot \frac{[Zr^{3+}][Cd^{+}]^2}{[Cd^{2+}]}$ (C) $Rate = k \cdot [Zr^{3+}][Cd_2^{2+}]$ (D) $Rate = k \cdot \frac{[Zr^{3+}][Cd_2^{2+}]}{[Cd^{2+}]}$ | | | | 12. Consider a reaction, R → P (i.e. Reactants → Products). If the activation energy for the reverse reaction is 85 kJ//mol and the overall energy (aka enthalpy) change for the reaction is -30 kJ/mol. Therefore, the activation energy for the forward reaction is: | | (A) +115 kJ/mol (B) +55 kJ/mol (C) +105 kJ/mol (D) -55 kJ/mol | | 13. In an enzyme catalyzed reaction, when the Substrate Concentration is much greater than the Michaelis-Constant, K _M , then the rate of the reaction is order with respect to [S] | | (A) Second order (B) First Order (C) Zeroth Order (D) Indeterminate without know the values of K _M and [S]. | | 14. In an enzyme catalyzed reaction, for what ratio, [S]/ K_M , is the initial velocity, $v_0 = 0.70 \text{ V}_m$? | | (A) 1.75 (B) 0.43 (C) 2.33 (D) 3.41 | | 15. Consider the gas phase equilibrium, $A(g) \rightleftharpoons B(g) + 3C(g)$, | | K_c = 1.0x10 ⁻⁵ . 3.0 mol of A(g) is placed in a 2.0 L container and the mixture is allowed to come to equilibrium. Calculate the approximate concentration of C(g at equilibrium. | | NOTE: You can assume that very little A(g) reacts to form B(g) and C(g) | | (A) 8.2×10^{-2} M (B) 1.1×10^{-1} M (C) 2.7×10^{-2} M (D) 9.7×10^{-2} M | | For #16 - #20 For the gas phase reaction, $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, $K_c = 120$. at 600 K. The Enthalpy change for this reaction is +95 kJ/mol | | 16. If a mixture is prepared with [SO ₂] = 0.4 M, [O ₂] = 0.3 M and [SO ₃] = 1.5 M, the reaction quotient is and the reaction will proceed towards the | | (A) 47., Right (B) 188., Left | | (C) 63., Right (D) 188., Right | | | | | 11. For the reaction, $Cd_2^{2+}(aq) + Zr^{3+}(aq) \rightarrow 2 \ Cd^{2+}(aq) + Zl^{+}(aq)$, the accepted reaction mechanism is: | 17. For the above reaction, if the equilibrium concentrations (at 600 K) of SO ₃ and O ₂ are 0.40 M and 0.10 M, respectively, what is the approximate equilibrium concentration of SO ₂ ? | |--| | (A) 0.12 M (B) 0.18 M (C) 0.013 M (D) 0.26 M | | 18. For the above equilibrium reaction, if the temperature is decreased , the ratio [SO ₂]/[SO ₃] will and K _c will | | (A) decrease , increase (B) decrease , decrease | | (C) increase, remain constant (D) increase, decrease | | 19. For the above reaction, if N ₂ (g) is added to the mixture in a container at fixed volume, the ratio [SO ₂]/[SO ₃] will and K _c will | | (A) increase , decrease (B) decrease , remain constant | | (C) remain constant , remain constant (D) increase , remain constant | | 20. What is the approximate equilibrium constant (at 600 K) for the related equilibrium, $4SO_2(g)+2O_2(g) \longleftrightarrow 4SO_3(g)$? | | (A) 240 (B) 1.4×10^4 (C) 6.9×10^{-5} (D) 8.3×10^{-3} | | | | | PART II. THERE ARE FOUR (4) PROBLEMS BELOW. a temperature of 120 °C, and 1.35x10⁵ min⁻¹ at 180 °C. Calculate the Arrhenius Activation Energy (in kJ/mol) and the Frequency Factor (in min⁻¹) for this reaction. 12, 2/5 x10 mi 人() = 一切(元) Eq = _________ = a[13040] 元· 知识 383/ = -1,335 y104R Ea = -R (-6.33 = 45/2) = 8.31 Thek (-1.33 = x0x) = 1.110 x105 The = [111. h The] luk, = d. to - Fefat) AA= has safe holds no)+ 11/4/0 (231/20) A= e41.29 = 852410 min The measured value of the rate constant for a first order reaction is 1.50x103 min-1 at (10) 1. Consider a molecule, B, which reacts to form Products via First Order kinetics: (10) 2. $$A \rightarrow P$$ $R = -\frac{d[A]}{dt} = k[A]$ The molecule, B, absorbs visible light at 480 nm. The Molar Absorptivity for this absorption is given by $\varepsilon = 800 \text{ M}^{-1} \text{ cm}^{-1}$. When a sample of B is prepared in a 0.5 cm cell, the Percent Transmission at the beginning of the reaction was 25%. After the reaction has run for 50 minutes, the percent transmission is 70%. Calculate the rate constant for this reaction (give the units) to somin 27= 70% A= 10(50) = 15/x10 M to somin 27= 70% A= 10(50) = 10(100) = 0.185 CMC = [8] = A = 6,155 (800m) = 3,8741 M First order: hol ATE)= - Lt + ho ([ATO) σο Κ = ln [a] - ln[a] = ln (151x103) - ln (3.87 x104) 50 mm L= 20272 min-1 (10) 3. Consider the reaction: $Cl_2(g) + 2 NO_2(g) \rightleftharpoons 2 NOCl(g)$. If 1.50 mol of Cl₂(g) and 1.50 mol of NO₂(g) are placed in a 5.0 Liter container, which is heated to 200 °C, the equilibrium concentration of NO₂(g) is 0.120 M. Calculate the equilibrium constant, Kc, for this reaction at 200 °C. 2007= [Na7, = 45 ml = 0.30 M Calc. 1 Fails Sva] y= 0.12M=6.3-2X X 2 0, 09 W Encor. Styll CNA 3 = 6,12 M $ECC_3 = 6.3 - x = 6.21 \text{ M}$ $ECC_3 = 2 \times = 0.18 (10) 4. Consider the reaction: $H_2(g) + I_2(g) \xrightarrow{K_c} 2HI(g)$ K_c = 9.0 (at 550 K) 8.0 mol of HI(g) is placed in a 20.0 L container and heated to 550 K, where equilibrium is established. Calculate the equilibrium concentrations (in M) of $H_2(g)$, $I_2(g)$ and HI(g)? $$A_{i} = A_{i}$$ x= 20811 $$2 \left[(N_{1}) - (I_{2}) - \chi = 0.08M \right]$$ $$5 \left[(N_{1}) - (N_{2}) - \chi \right] = 0.40 - 2 \left[(0.08) \right]$$ $$- \left[(0.24) M \right]$$