CHEM 1423-Exam 1 - February 11, 2016

Constants and Equations: $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Beer-Lambert Law: $A=\log \left(\frac{I_{o}}{I}\right)=\varepsilon b c$
Michaelis-Menten Equation: $v_{0}=\frac{V_{m}[S]}{K_{M}+[S]}$

CHEM 1423 - Exam 1 - February 11, 2016

Name \qquad
(60) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. Consider the hypothetical reaction, $2 A+B \rightarrow 3 C$. If the rate of change of [C] is $\Delta[\mathrm{C}] / \mathrm{dt}=+0.60 \mathrm{M} \mathrm{hr}^{-1}$. What is the rate of change of $[\mathrm{A}], \Delta[\mathrm{A}] / \mathrm{dt}$?
(A) $-0.20 \mathrm{M} \mathrm{hr}^{-1}$
(B) $-0.40 \mathrm{M} \mathrm{hr}^{-1}$
(C) $-0.30 \mathrm{M} \mathrm{hr}^{-r}$
(D) $+0.40 \mathrm{M} \mathrm{hr}^{-1}$
2. The rate of the chemical reaction involving two substances, A and B, is measured. It is found that if the initial concentration of A used is tripled, keeping the B concentration the same, the rate increases by a factor of 27 (relative to the first experiment). If the concentrations of both A and B are doubled, the rate increases by a factor of 32 (relative to the first experiment). The rate law for this reaction is: Rate $=$
(A) $k[A]^{2}[B]^{3}$
(B) $\mathrm{k}[\mathrm{A}]^{2}[B]^{2}$
(C) $k[A]^{3}[B]$
(D) $k[A]^{3}[B]^{2}$

For \#3-\#4: Consider a reaction, $A \rightarrow$ Products, which is of order "n"; i.e. Rate $=k[A]^{n}$. For this reaction, the following initial rate data was obtained.

When $[A]_{0}=0.20 \mathrm{M}$, the initial rate is $0.50 \mathrm{M} / \mathrm{s}$
When $[A]_{0}=0.60 \mathrm{M}$, the initial rate is $13.5 \mathrm{M} / \mathrm{s}$
3. The order of this reaction (i.e. " n ") is:
(A) +3
(B) +2
(C) +1
(D) -1
4. The rate constant for this reaction (i.e. " k ") is:
(A) $313 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(B) $12.5 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
(C) $62.5 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
(D) $2.5 \mathrm{~s}^{-1}$
5. Radioactive decay follows first order kinetics. Thallium-201 is a radioisotope which is used for myocardial imaging tests. Its half-life is 73 hours. If 300 mg of ${ }^{201} \mathrm{TI}$ is injected into a patient, how many mg will remain 185 hours after the injection?
(A) 124 mg
(B) 52 mg
(C) 34 mg
(D) 83 mg .
6. For the zeroth order reaction, $A \rightarrow$ Products, when the initial concentration of A is 0.90 M , it takes 25 s for the concentration to decrease to 0.30 M . Therefore, the rate constant for this reaction is approximately:
(A) $0.044 \mathrm{Ms}^{-1}$
(B) $0.089 \mathrm{Ms}^{-1}$
(C) $0.015 \mathrm{Ms}^{-1}$
(D) $0.024 \mathrm{Ms}^{-1}$

For \#7 - \#8: Consider a reaction, $A \rightarrow$ Products, which is of second order; i.e. Rate $=k[A]^{2}$. For this reaction, the rate constant is $8.5 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
7. For this reaction, a plot of \qquad vs. time is a straight line with a \qquad slope.
(A) $\ln ([A] t)$, negative
(B) $[A]_{t}$, negative
(C) $1 /(\mathrm{A}]_{\mathrm{t}}$), negative
(D) $1 /[A]_{t}$, positive
8. If the initial concentration of A is 0.75 M , what will be the approximate concentration of A 600 seconds after the start of the reaction.
(A) 0.20 M
(B) 0.16 M
(C) 0.28 M
(D) 0.046 M
9. Which one statement below is correct? The frequency factor in the Arrhenius equation can best be described as:
(A) A numerical description of the amount of energy released by colliding reactant molecules when they form products.
(B) The probability that a collision between molecules will have the correct relative orientation for reaction to occur.
(C) A numerical description of how often molecules collide with the proper orientation to react at a specific concentration.
(D) A numerical description of the amount of energy needed by colliding reactant molecules in order to form products.
10. Which of the following statements is/are NOT true?
(1) The mechanism for a catalyzed reaction is different from the mechanism of the same reaction without the catalyst.
(2) The enthalpy change of the reaction is lower for the catalyzed reaction than for the uncatalyzed chemical reaction.
(3) The catalyst in a reaction is present at the start of the reaction and is regenerated during the reaction.
(4) The Rate Determining Step in a catalyzed reaction mechanism has a higher activation energy and, therefore, is faster than the Rate Determining Step for the uncatalyzed reaction.
(A) $2 \& 4$
(B) $2 \& 3 \& 4$
(C) $1 \& 3$
(D) $2 \& 4$
11. For the reaction, $\mathrm{Cd}_{2}{ }^{2+}(\mathrm{aq})+\mathrm{Zr}^{3+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{Zl}^{+}(\mathrm{aq})$,. the accepted reaction mechanism is:

$$
\begin{array}{ll}
\mathrm{Cd}_{2}^{2+} \stackrel{\mathrm{K}}{\longleftrightarrow} \mathrm{Cd}+\mathrm{Cd}^{2+} & \text { Fast Pre-Equilibrium } \\
\mathrm{Zr}^{3+}+\mathrm{Cd} \xrightarrow{k_{2}} \mathrm{Zr}^{+}+\mathrm{Cd}^{2+} & \text { Slow Rate Determining Step }
\end{array}
$$

An acceptable rate law for the rate, Rate $=\Delta\left[Z r^{+}\right] / \Delta t$, is:
(A) Rate $=k \cdot \frac{\left[\mathrm{Zr}^{3+}\right]\left[\mathrm{Cd}_{2}^{2+}\right]}{[\mathrm{Cd}]}$
(B) Rate $=k \cdot \frac{\left[\mathrm{Zr}^{3+}\right]\left[\mathrm{Cd}^{+}\right]^{2}}{\left[\mathrm{Cd}^{2+}\right]}$
(C) Rate $=k^{\prime}\left[\mathrm{Zr}^{3+}\right]\left[\mathrm{Cd}_{2}^{2+}\right]\left[\mathrm{Cd}^{2+}\right]$
(D) Rate $=k^{\prime} \frac{{ }^{\left[\mathrm{Zr}^{3+}\right]\left[\mathrm{Cd}_{2}^{2+}\right]}}{\left[\mathrm{Cd}^{2+}\right]}$
12. Consider a reaction, $R \rightarrow P$ (i.e. Reactants \rightarrow Products). If the activation energy for the reverse reaction is $85 \mathrm{~kJ} / / \mathrm{mol}$ and the overall energy (aka enthalpy) change for the reaction is $-30 \mathrm{~kJ} / \mathrm{mol}$. Therefore, the activation energy for the forward reaction is:
(A) $+115 \mathrm{~kJ} / \mathrm{mol}$
(B) $+55 \mathrm{~kJ} / \mathrm{mol}$
(C) $+105 \mathrm{~kJ} / \mathrm{mol}$
(D) $-55 \mathrm{~kJ} / \mathrm{mol}$
13. In an enzyme catalyzed reaction, when the Substrate Concentration is much greater than the Michaelis-Constant, K_{M}, then the rate of the reaction is \qquad order with respect to [S]
(A) Second order
(B) First Order
(C) Zeroth Order
(D) Indeterminate without know the values of K_{m} and [S].
14. In an enzyme catalyzed reaction, for what ratio, $[\mathrm{S}] / \mathrm{K}_{\mathrm{m}}$, is the initial velocity, $\mathrm{V}_{0}=0.70 \mathrm{~V}_{\mathrm{m}}$?
(A) 1.75
(B) 0.43
(C) 2.33
(D) 3.41
15. Consider the gas phase equilibrium, $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+3 \mathrm{C}(\mathrm{g})$,
$\mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-5} . \quad 3.0 \mathrm{~mol}$ of $\mathrm{A}(\mathrm{g})$ is placed in a 2.0 L container and the mixture is allowed to come to equilibrium. Calculate the approximate concentration of $\mathrm{C}(\mathrm{g})$ at equilibrium.

NOTE: You can assume that very little $A(g)$ reacts to form $B(g)$ and $C(g)$
(A) $8.2 \times 10^{-2} \mathrm{M}$
(B) $1.1 \times 10^{-1} \mathrm{M}$
(C) $2.7 \times 10^{-2} \mathrm{M}$
(D) $9.7 \times 10^{-2} \mathrm{M}$

For \#16-\#20 For the gas phase reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=120$. at 600 K . The Enthalpy change for this reaction is $+95 \mathrm{~kJ} / \mathrm{mol}$
16. If a mixture is prepared with $\left[\mathrm{SO}_{2}\right]=0.4 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.3 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.5 \mathrm{M}$, the reaction quotient is \qquad and the reaction will proceed towards the \qquad .
(A) 47., Right
(B) 188., Left
(C) 63. , Right
(D) 188. , Right
17. For the above reaction, if the equilibrium concentrations (at 600 K) of SO_{3} and O_{2} are 0.40 M and 0.10 M , respectively, what is the approximate equilibrium concentration of SO_{2} ?
(A) 0.12 M
(B) 0.18 M
(C) 0.013 M
(D) 0.26 M
18. For the above equilibrium reaction, if the temperature is decreased, the ratio [$\left.\mathrm{SO}_{2}\right] /\left[\mathrm{SO}_{3}\right]$ will \qquad and K_{c} will \qquad .
(A) decrease , increase
(B) decrease, decrease
(C) increase, remain constant
(D) increase, decrease
19. For the above reaction, if $\mathrm{N}_{2}(\mathrm{~g})$ is added to the mixture in a container at fixed volume, the ratio $\left[\mathrm{SO}_{2}\right] /\left[\mathrm{SO}_{3}\right]$ will \qquad and K_{c} will \qquad .
(A) increase, decrease
(B) decrease, remain constant
(C) remain constant, remain constant
(D) increase, remain constant
20. What is the approximate equilibrium constant (at 600 K) for the related equilibrium, $4 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{SO}_{3}(\mathrm{~g})$?
(A) 240
(B) 1.4×10^{4}
(C) 6.9×10^{-5}
(D) 8.3×10^{-3}

PART II. THERE ARE FOUR (4) PROBLEMS BELOW.

(10) 1. The measured value of the rate constant for a first order reaction is $1.50 \times 10^{3} \mathrm{~min}^{-1}$ at a temperature of $120^{\circ} \mathrm{C}$, and $1.35 \times 10^{5} \mathrm{~min}^{-1}$ at $180^{\circ} \mathrm{C}$. Calculate the Arrhenius Activation Energy (in $\mathrm{kJ} / \mathrm{mol}$) and the Frequency Factor (in min^{-1}) for this reaction.
(10) 2. Consider a molecule, B, which reacts to form Products via First Order kinetics:

$$
\mathrm{A} \rightarrow \mathrm{P} \quad R=-\frac{d[A]}{d t}=k[A]
$$

The molecule, B, absorbs visible light at 480 nm . The Molar Absorptivity for this absorption is given by $\varepsilon=800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.
When a sample of B is prepared in a 0.5 cm cell, the Percent Transmission at the beginning of the reaction was 25%. After the reaction has run for 50 minutes, the percent transmission is 70\%. Calculate the rate constant for this reaction (give the units)
(10) 3. Consider the reaction: $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$.

If 1.50 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ and 1.50 mol of $\mathrm{NO}_{2}(\mathrm{~g})$ are placed in a 5.0 Liter container, which is heated to $200^{\circ} \mathrm{C}$, the equilibrium concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ is 0.120 M . Calculate the equilibrium constant, K_{c}, for this reaction at $200^{\circ} \mathrm{C}$.
(10) 4. Consider the reaction: $H_{2}(g)+I_{2}(g) \stackrel{K_{c}}{\rightleftarrows} 2 \mathrm{HI}(\mathrm{g}) \quad \mathrm{K}_{c}=9.0$ (at 550 K) 8.0 mol of $\mathrm{HI}(\mathrm{g})$ is placed in a 20.0 L container and heated to 550 K , where equilibrium is established.
Calculate the equilibrium concentrations (in \mathbf{M}) of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$?

