CHEM 1423 - Exam 2 - March 3, 2016

Constants and Conversion Factors

R = 0.082 L-atm/mol-K

R = 8.31 J/mol-K

1 atm. = 760 torr

Molar Masses: $C_6H_{12}O_6$ - 180. $C_{12}H_{22}O_{11}$ - 342. C_2H_6O - 46.

 $H_2O - 18$. $AI(NO_3)_3 - 213$.

NaOH - 40. HNO₃ - 63. HClO₄ - 100.5

Beer-Lambert Law: $A = \log \left(\frac{I_o}{I} \right) = \varepsilon bc$

CHEM 1423 - Exam 2 - March 3, 2016

		Name							
(60)	PART	I. MULTIPLE CH	MULTIPLE CHOICE (Circle the ONE correct answer)						
	1.	Consider the equilibrium, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$. This is an endothermic reaction with $\Delta H^o = +180$ kJ/mol. The value of the equilibrium constant is $K_c = 7.0 \times 10^{-10}$ at 650 °C. What is the approximate value of K_c at 550 °C?							
		(A) 4.0x10 ⁻¹¹	(A) 1.6x10 ⁻¹²	(A) 3.0x10 ⁻⁷	(A) 1.2x10 ⁻⁸				
	2.		•	solvent generally process is	with increasing				
		(A) increases, e	ndothermic	(B) decreases, end	dothermic				
		(C) increases, e	xothermic	(D) decreases, exc	othermic				
	3.		solvent generally copy change for the sol						
		(A) increases, no	egative (I	3) decreases , negativ	re				
		(C) increases, p	ositive (D) decreases , positive	е				
	Fo	r #4 - #5 : A samp	le of drinking wa	ater contains 650 ppt o	f Te (by mass).				
	4.	The mass fraction	on of Te in the sa	ample is:					
		(A) 6.5x10 ⁻¹² %	(B) 6.5x10	$(C) 6.5x10^{-10}$	⁸ % (D) 6.5x10 ⁻⁷				
	5.	How many ng of Te are contained in a 400 g sample of the drinking water.							
		(A) 0.65 ng	(B) 1.6x10 ⁻³	ng (C) 2.6x10 ^o	⁴ ng (D) 260 ng				
	For #6 - #7: When 45 grams of glucose $[C_6H_{12}O_6]$ is added to 90 grams of wate the density of the solution is 1.25 g/mL.								
	6.	The Molarity of the	ne above solutio	n is					
		(A) 2.3 Molar	(B) 1.9 Mol	ar (C) 2.6 Mola	r (D) 2.8 Molar				
	7.	The molality of th	ne above solutio	n is					
		(A) 2.3 molal	(B) 1.9 mola	al (C) 2.8 mola	I (D) 2.1 molal				

8.	Approximately how many grams of sucrose, C ₁₂ H ₂₂ O ₁₁ , are required to prepare 3.0 L of a 0.40 Molar sucrose solution?							
	(A) 410 grams	(B) 205 grams	(C) 164 grams	(D) 342 grams				
9.	Approximately how many grams of ethanol (C_2H_6O) must be added to 450 grams of water, H_2O , to prepare a solution in which the ethanol mole fraction is 0.20 ?							
	(A) 73 g	(B) 113 g	(C	C) 288 g				
	(D) Cannot be determined without the density of the solution							
10	10. When 90 grams of glucose (C ₆ H ₁₂ O ₆) is added to 144 g of water (H ₂ O), the pressure above the solution is 132 torr at 60 °C. What is the approximate pressure of pure water at 60 °C?							
	(A) 148 torr	(B) 140 torr	(C) 124 torr	(D) 7.8 torr				
11	11. A sample of glucose is dissolved in 400 grams of water ($K_f = 1.86$ °C/m). The freezing point of the solution is -1.60 °C. Approximately how many moles of glucose are dissolved in this sample?							
	(A) 0.19 mol	(B) 0.26 mol	(C) 1.15 mol	(D) 0.34 mol				
12	When 20 grams of an unknown compound is dissolved in 150 grams of water ($K_f = 1.86$ °C/m), the freezing point of the solution is -3.5 °C. What is the approximate Molar Mass of the unknown compound?							
	(A) 112. g/mol	(B) 89 g/mol	(C) 56. g/mol	(D) 71 g/mol				
13	What is the approximate osmotic pressure, in torr , when $1.6x10^{-3}$ mol of the strong electrolyte, magnesium phosphate [Mg ₃ (PO ₄) ₂], is dissolved in 720 mL of aqueous solution at 25 °C?							
	(A) 206 torr	(B) 14 torr	(C) 107 torr	(D) 41 torr				
14	. Which of the follow	ing solutions has the	lowest boiling p	oint?				
	(A) 0.35 m C ₆ H ₁₂ O	0 ₆ (B)	0.10 m Mg(NO ₃) ₂					
	(C) 0.17 m KCl	(D)	0.09 m Na ₃ PO ₄					
15	A sample of the strong electrolyte, aluminum nitrate [Al(NO ₃) ₃], is dissolved in 300 g of H ₂ O ($K_b = 0.51$ °C/m). The boiling point of the solution is 101.3 °C. Approximately how many grams of Al(NO ₃) ₃ are contained in the solution?							
	(A) 28.4 g	(B) 136. g (C) 40.7 g	(D) 163. g				

17.		oH of a solutio 0 mL of aqued				⁻⁴ grams of	the base,	NaOH,
	(A) 9	9.3	(B) 10.7	(0	2) 4.7	((D) 8.6	
18.	8. Approximately how many grams of nitric acid, HNO ₃ , must be dissolved in of aqueous solution to prepare a solution with pOH = 8.4 ?							
	(A) 7	′.4x10 ⁻³ g	(B) 6.3x10) ⁻⁶ g	(C) 4.0x10) ⁻³ g	(D) 6.3x10) ⁻⁵ g
19.	(i) H ₂ (ii) C (iii) H	h of the follow		conjugate	e acid/base	pairs?		
	(A) ii	i & iii	(B) iv only		(C) i & ii &	iv	(D) i&i	/
20.		is the acid dis	or the Hydr	ogen Phos	phate			
	(A) <i>I</i>	$K_a = \frac{[H^+][HPO]}{[PO_4^{3-}]}$	$[2^{2-}]$	(B) K _a =	$=\frac{[H^+][PO_4^{3-}}{[HPO_4^{2-}]}$	1		
	(C)	$K_a = \frac{[H^+][HP]}{[H_2PO]}$	$\frac{O_4^{2-}]}{[1]}$	(D) K _a	$=\frac{[H^+][HPO]}{[H_2PO]}$	$\frac{Q_4^{2-}]}{1}$		

PART II. FOUR (4) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

16. Rank the following three solutions in order of increasing acidity

(1) $[OH^-] = 2.0 \times 10^{-9} \text{ M}$ (2) $[H^+] = 2.0 \times 10^{-6} \text{ M}$ (3) pOH = 8.9

(A) 1 < 3 < 2 (B) 2 < 1 < 3 (C) 1 < 2 < 3 (D) 2 < 3 < 1

(10) 1. Consider the aqueous solution equilibrium, $2A(aq) \rightleftharpoons B(aq) + 2 C(aq)$. The product, B, has an absorption in the UV range of the spectrum at 450 nm, with a Molar Absorptivity, $\epsilon = 3,700 \text{ M}^{-1} \text{ cm}^{-1}$

A solution is prepared in a 0.50 cm cell with an initial concentration of the reactant, A, $[A]_0 = 1.00 \times 10^{-3}$ M, and the solution is allowed to reach equilibrium.

At equilibrium, the percent transmission of product, B, is %T = 44.0%.

Calculate the equilibrium constant, K_c, for this reaction.

(10) 2. Concentrated aqueous Perchloric Acid, HClO₄(aq), has a Molarity of 11.6 M, and a density of 1.67 g/mL.

Calculate the weight percent of HClO₄ in the concentrated Perchloric Acid solution.

(10) 3. 1.5 grams of a sample of Ribonucleus A is dissolved in 400 mL of aqueous solution. The measured Osmotic Pressure of the solution at 35 °C is 5.2 torr.Calculate the Molar Mass of this sample of Ribonucleus A.

(10) 4. 15. L of an aqueous Nitric Acid, HNO₃(aq), solution with pH = 4.70 are mixed with 25. L of an aqueous Potassium Hydroxide, KOH(aq), solution with pH = 9.20.
Calculate the pH of the resulting solution.