CHEM 1423 - Exam 2 - March 3, 2016

Constants and Conversion Factors

$\mathrm{R}=0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
1 atm. $=760$ torr

Molar Masses:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-180$.
$\mathrm{H}_{2} \mathrm{O}-18$.
$\mathrm{NaOH}-40$.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}-342$.
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}-213$.
$\mathrm{HNO}_{3}-63$.
$\mathrm{HClO}_{4}-100.5$

Beer-Lambert Law: $A=\log \left(\frac{I_{o}}{I}\right)=\varepsilon b c$

CHEM 1423 - Exam 2 - March 3, 2016

Name \qquad
(60) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. Consider the equilibrium, $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)$. This is an endothermic reaction with $\Delta \mathrm{H}^{\circ}=+180 \mathrm{~kJ} / \mathrm{mol}$. The value of the equilibrium constant is $\mathrm{K}_{\mathrm{c}}=7.0 \times 10^{-10}$ at $650^{\circ} \mathrm{C}$. What is the approximate value of K_{c} at $550^{\circ} \mathrm{C}$?
(A) 4.0×10^{-11}
(A) 1.6×10^{-12}
(A) 3.0×10^{-7}
(A) 1.2×10^{-8}
2. The solubility of a gas in a liquid solvent generally \qquad with increasing temperature because the solution process is \qquad
(A) increases, endothermic
(B) decreases, endothermic
(C) increases, exothermic
(D) decreases, exothermic
3. The solubility of a solid in a liquid solvent generally \qquad with increasing temperature because the the entropy change for the solution process is
\qquad
(A) increases, negative
(B) decreases, negative
(C) increases, positive
(D) decreases, positive

For \#4-\#5: A sample of drinking water contains 650 ppt of Te (by mass).
4. The mass fraction of Te in the sample is:
(A) $6.5 \times 10^{-12} \%$
(B) 6.5×10^{-10}
(C) $6.5 \times 10^{-8} \%$
(D) 6.5×10^{-7}
5. How many ng of Te are contained in a 400 g sample of the drinking water.
(A) 0.65 ng
(B) $1.6 \times 10^{-3} \mathrm{ng}$
(C) $2.6 \times 10^{4} \mathrm{ng}$
(D) 260 ng

For \#6 - \#7: When 45 grams of glucose $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]$ is added to 90 grams of water, the density of the solution is $1.25 \mathrm{~g} / \mathrm{mL}$.
6. The Molarity of the above solution is
(A) 2.3 Molar
(B) 1.9 Molar
(C) 2.6 Molar
(D) 2.8 Molar
7. The molality of the above solution is
(A) 2.3 molal
(B) 1.9 molal
(C) 2.8 molal
(D) 2.1 molal
8. Approximately how many grams of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, are required to prepare 3.0 L of a 0.40 Molar sucrose solution?
(A) 410 grams
(B) 205 grams
(C) 164 grams
(D) 342 grams
9. Approximately how many grams of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$ must be added to 450 grams of water, $\mathrm{H}_{2} \mathrm{O}$, to prepare a solution in which the ethanol mole fraction is 0.20 ?
(A) 73 g
(B) 113 g
(C) 288 g
(D) Cannot be determined without the density of the solution
10. When 90 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 144 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, the vapor pressure above the solution is 132 torr at $60^{\circ} \mathrm{C}$. What is the approximate vapor pressure of pure water at $60^{\circ} \mathrm{C}$?
(A) 148 torr
(B) 140 torr
(C) 124 torr
(D) 7.8 torr
11. A sample of glucose is dissolved in 400 grams of water ($\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}$). The freezing point of the solution is $-1.60^{\circ} \mathrm{C}$. Approximately how many moles of glucose are dissolved in this sample?
(A) 0.19 mol
(B) 0.26 mol
(C) 1.15 mol
(D) 0.34 mol
12. When 20 grams of an unknown compound is dissolved in 150 grams of water $\left(K_{f}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-3.5^{\circ} \mathrm{C}$. What is the approximate Molar Mass of the unknown compound?
(A) $112 . \mathrm{g} / \mathrm{mol}$
(B) $89 \mathrm{~g} / \mathrm{mol}$
(C) $56 . \mathrm{g} / \mathrm{mol}$
(D) $71 \mathrm{~g} / \mathrm{mol}$
13. What is the approximate osmotic pressure, in torr, when $1.6 \times 10^{-3} \mathrm{~mol}$ of the strong electrolyte, magnesium phosphate $\left[\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]$, is dissolved in 720 mL of aqueous solution at $25^{\circ} \mathrm{C}$?
(A) 206 torr
(B) 14 torr
(C) 107 torr
(D) 41 torr
14. Which of the following solutions has the lowest boiling point?
(A) $0.35 \mathrm{~m} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(B) $0.10 \mathrm{~m} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
(C) 0.17 m KCl
(D) $0.09 \mathrm{~m} \mathrm{Na}_{3} \mathrm{PO}_{4}$
15. A sample of the strong electrolyte, aluminum nitrate $\left[\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right]$, is dissolved in 300 g of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{b}}=0.51^{\circ} \mathrm{C} / \mathrm{m}\right)$. The boiling point of the solution is $101.3^{\circ} \mathrm{C}$. Approximately how many grams of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ are contained in the solution?
(A) 28.4 g
(B) $136 . \mathrm{g}$
(C) 40.7 g
(D) $163 . \mathrm{g}$
16. Rank the following three solutions in order of increasing acidiity
(1) $\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-9} \mathrm{M}$
(2) $\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-6} \mathrm{M}$
(3) $\mathrm{pOH}=8.9$
(A) $1<3<2$
(B) $2<1<3$
(C) $1<2<3$
(D) $2<3<1$
17. The $\mathbf{p H}$ of a solution prepared by dissolving 7.0×10^{-4} grams of the base, NaOH , in 800 mL of aqueous solution is approximately
(A) 9.3
(B) 10.7
(C) 4.7
(D) 8.6
18. Approximately how many grams of nitric acid, HNO_{3}, must be dissolved in 25 . L of aqueous solution to prepare a solution with $\mathbf{~} \mathrm{OH}=8.4$?
(A) $7.4 \times 10^{-3} \mathrm{~g}$
(B) $6.3 \times 10^{-6} \mathrm{~g}$
(C) $4.0 \times 10^{-3} \mathrm{~g}$
(D) $6.3 \times 10^{-5} \mathrm{~g}$
19. Which of the following are not conjugate acid/base pairs?
(i) $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{CO}_{3}{ }^{2-}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(iii) $\mathrm{HPO}_{4}{ }^{2-} / \mathrm{PO}_{4}{ }^{3-}$
(iv) $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{5}$
(A) ii \& iii
(B) iv only
(C) i \& ii \& iv
(D) i \& iv
20. What is the acid dissociation equilibrium equation for the Hydrogen Phosphate ion, $\mathrm{HPO}_{4}{ }^{2-}$?
(A) $K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{PO}_{4}^{3-}\right]}$
(B) $K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}$
(C) $K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$
(D) $K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$

PART II. FOUR (4) PROBLEMS ON FOLLOWING PAGES:

(10) 1. Consider the aqueous solution equilibrium, $2 \mathrm{~A}(\mathrm{aq}) \rightleftharpoons \mathrm{B}(\mathrm{aq})+2 \mathrm{C}(\mathrm{aq})$. The product, B, has an absorption in the UV range of the spectrum at 450 nm , with a Molar Absorptivity, $\varepsilon=3,700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
A solution is prepared in a 0.50 cm cell with an initial concentration of the reactant, $A,[A]_{0}=1.00 \times 10^{-3} \mathrm{M}$, and the solution is allowed to reach equilibrium.

At equilibrium, the percent transmission of product, B, is $\% \mathrm{~T}=44.0 \%$.
Calculate the equilibrium constant, K_{c}, for this reaction.
(10) 2. Concentrated aqueous Perchloric Acid, $\mathrm{HClO}_{4}(\mathrm{aq})$, has a Molarity of 11.6 M , and a density of $1.67 \mathrm{~g} / \mathrm{mL}$.

Calculate the weight percent of HClO_{4} in the concentrated Perchloric Acid solution.
(10) 3. 1.5 grams of a sample of Ribonucleus A is dissolved in 400 mL of aqueous solution. The measured Osmotic Pressure of the solution at $35^{\circ} \mathrm{C}$ is 5.2 torr.

Calculate the Molar Mass of this sample of Ribonucleus A.
(10) 4. 15. L of an aqueous Nitric Acid, $\mathrm{HNO}_{3}(\mathrm{aq})$, solution with $\mathrm{pH}=4.70$ are mixed with 25. L of an aqueous Potassium Hydroxide, $\mathrm{KOH}(\mathrm{aq})$, solution with $\mathrm{pH}=9.20$. Calculate the pH of the resulting solution.

