Versin A

CHEM 1423 - Exam 2 - March 2, 2017

Constants and Conversion Factors

R = 0.082 L-atm/mol-K

R = 8.31 J/mol-K

1 atm. = 760 torr

Molar Masses:

C₂H₆O₂ - 62.

H₂O - 18.

C₆H₁₂O₆ - 180.

 $NH_3 - 17$, $C_6H_5C_2H_5(I) - 106$

Beer-Lambert Law: $A = \log \left(\frac{I_o}{I}\right) = \varepsilon bc$

Verson A

CHEM 1423 - Exam 2 - March 2, 2017

Name	Só	In Dans	

(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

For #1 - #3: Consider he gas phase reaction, 2 $Br_2(g) + 4 NO(g) \rightleftharpoons 4 NOBr(g)$, $K_c = 50$. at 400 K. The enthalpy change for this reaction is $\Delta H = +75 \text{ kJ}$

 For the above equilibrium reaction, if NO(g) is added to the mixture, the ra [NOBr]/[Br₂] will and K₀ will 			
	(A) decrease, remain constant (B) increase, decrease		
<	(C) increase, remain constant? (D) decrease, decrease		
2.	For the above equilibrium reaction, if the temperature is decreased , the ratio [NOBr]/[Br ₂] will and K_c will		
	(A) decrease , remain constant (B) increase , decrease		
	(C) increase, remain constant (D) decrease, decrease		
3.	For the above reaction, if Ar(g) is added to the mixture in a container at fixed total pressure, the ratio [NOBr]/[Br ₂] will and K _c will		
	(A) decrease , remain constant (B) increase , decrease		
	(C) remain constant (D) increase, remain constant		
4.	Consider the equilibrium, $H_2(gas) + I_2(solid) \rightleftharpoons 2 \ HI(gas)$ If the volume of the container is decreased , the ratio, $[HI(g)]/[H_2(g), will and K_c will$		
	(A) decrease , decrease (B) decrease , remain constant		
	(C) remain constant (D) increase, remain constant		

For #5-#6: Consider the aqueous solution equilibrium, A(aq) \rightleftharpoons 3 B(aq). The product, B, has an absorption in the UV range of the spectrum at 450 nm, with a Molar Absorptivity, ε = 50. M⁻¹ cm⁻¹

A solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A, $[A]_0 = 0.005$ M, and the solution is allowed to reach equilibrium. At equilibrium, the % transmittance of B is 30%.

- 5. What is the approximate concentration of B at equilibrium?
 - (A) 0.021 M
- (B) 0.0023 M
- (C) 0.0070 M
- (D) 0.00023 M

6. What is the approximate value of the equilibrium constant for the above reaction?					
$(A) 1.3x10^{-4}$	(B) 2.6	(C) 1.2x10 ⁻⁸	(D) 3.7x10 ⁻²		
7. Which of the fo	ollowing statements	is/are NOT correct.			
(i) the solubilit	y of most solids in a	a liquid increases with	n rising temperature.		
,	•	·	h rising temperature.		
(iii) when a so	lid is dissolved in a	liquid, the entropy in	creases.		
> (iv) ΔH _{soin} mus	st be negative for a	solid to dissolve in a	liquid.		
(A) ii only	(B) iv only	(C) i&iii	(D) ii & iv		
billion) of Arse	nic. Therefore, the	Weight Percent of Ar	rater is 16 ppb (parts per resenic in the sample is:		
(A) 1.6x10 ⁻¹⁰	% (B) 1.0x10 °	% (C) 1.6x10 ⁻⁹ %	(D) 1.6x10 ⁻⁸ %		
	_	nylene Glycol (C ₂ H ₆ O solution is 0.80 g/mL			
9. The Molarity of	of Ethylene Glycol in	n the above solution i	s approximately:		
(A) 3.3 M	(B) 2.7 M	(C) 2.2 M	(D) 3.5 M		
10. The mole frac	tion of Ethylene Gl	ycol in the above sol	ution is approximately:		
(A) 0.21	(B) 0.057	(C) 0.060	(D) 0.17		
11. You want to prepare a 1.5 molal solution of Ethylene Glycol (C ₂ H ₆ O ₂) in water. Approximately how many grams of Ethylene Glycol would you have to add to 600 grams of water to prepare this solution?					
(A) 56 g	(B) 65 g	(C) 80 g	(D) 41 g		
12. What is the approximate weight % of Glucose C ₆ H ₁₂ O ₆ in an aqueous solution containing 0.80 molal Glucose?					
(A) 0.14 %	(B) 1.4 %	(C) 14.4 %	(D) 12.6%		
•	proximate NH ₃ Mo l 6 (solution density	larity in a solution in = 0.92 g/mL)?	which the NH₃ mass		
(A) 6.5 M	(B) 5.4 M	(C) 3.7 M	(D) 5.9 M		

14. When 60 grams of an unknown compound is dissolved in 500 g of water (K∈1.9 °C/m), the freezing point of the solution is -2.20 °C. The Molar Mass of the compound is approximately						
	(A) 52 g/mol	(B) 104 g/m	(C)	70 g/mol	(D) 86	g/mol
15.	What is the osmo aluminum nitrate 25 °C?					
	(A) 0.16 torr	(B) 29 torr	<	(C) 118 torr	(D)) 105 torr
16.	When 2.0 grams osmotic pressure approximately:	-			•	
<	(A) 6.5x10 ³ g/mg	(B) 4.4	x10³ g/mol	(C) 2.3	3x10³ g/mo	l
	(D) Cannot be de	etermined witho	ut the Osmo	otic Pressure	Depressio	n Constant
17.	17. The vapor pressure of pure water at 60 °C is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose (C ₆ H ₁₂ O ₆) to 300 grams of water at 60 °C?					
-	(A) 137.4 torr	(B) 102.8	torr	(C) 6.4 torr	(D) 1	42.6 torr
18.	Consider the stro phosphate, Na ₃ P	•	sodium sul	fate, Na ₂ SO ₄	, and sodiu	m
	If 350 mL of 0.30 sodium ion conce					,
	(A) 0.59 M	(B) 0.98	м	(C) 046 M	(D) (D.35 M
19.	Which one of the	following solution	ons has the	lowest boili	ng point?	
	(A) 0.10 m Mg ₃ (i	PO ₄) ₂	(B)	0.11 m K ₃ /	AsO ₄	
	(C) 0.20 m Na ₂ S	6O4	(D)	0.32 m NF	l ₄ Cl	

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

Version A

(12) 1. Consider the equilibrium between $N_2(g)$, $H_2(g)$, $N_3(g)$: $N_2(g) + 3 H_2(g) \rightleftarrows 2 NH_3(g)$. The value of K_c at 30 °C is 8.0. The Enthalpy change for this reaction is $\Delta H = -92.0 \text{ kJ}$.

Calculate the temperature, in °C, at which the equilibrium constant, Kc, is 1.00x10-4...

$$h(ker_{k_{1}}) = -\frac{2H^{0}}{R}(\frac{1}{7} - \frac{1}{7})$$

$$\frac{1}{7} = \frac{1}{7} - \frac{2}{8H^{0}}h(ker_{k_{1}})$$

$$= \frac{1}{38K} - \frac{2.31}{(-9.20\times10^{7})}h(\frac{1.07\times10^{4}}{8.0})$$

$$\frac{1}{7} = 2.281\times10^{3} \mu^{-1}$$

$$75 = 438 \text{ k} - 273$$

(12) 2. The vapor pressure of pure Ethylbenzene, $C_6H_5C_2H_5(I)$ [M=106], is 74.0 torr at 70 °C. When 50 grams of an unknown non-volatile solute, X, is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at 70 °C is 62.9 torr.

Calculate the Molar Mass of the unknown, X, in grams/mol

$$F_{ER} = F_{ER} = \frac{F_{EB}}{F_{EB}} = \frac{629}{74.0} = 0.85$$

$$F_{EB} = \frac{F_{EB}}{F_{EB}} = \frac{629}{74.0} = 0.85$$

$$F_{EB} = \frac{1}{1069} = 2.5 \text{ ml}$$

$$F_{EB} = \frac{1}{1069} = 2.5 \text{ ml}$$

XEB = MEB = 0.85

NEB = 0.85-NEB + 0.85-NX

$$o^{5} N_{\chi} = 6.15N_{FB} = 6.15(2.5) = 0.444 \text{ ml} \chi$$

Versim B

CHEM 1423 - Exam 2 - March 2, 2017

Constants and Conversion Factors

R = 0.082 L-atm/mol-K

R = 8.31 J/mol-K

1 atm. = 760 torr

Molar Masses: $C_2H_6O_2 - 62$. $H_2O - 18$.

C₆H₁₂O₆ - 180.

 $NH_3 - 17$, $C_6H_5C_2H_5(I) - 106$

Beer-Lambert Law: $A = \log \left(\frac{I_o}{I}\right) = \varepsilon bc$

Viran B

CHEM 1423 - Exam 2 - March 2, 2017

For #1-#2: Consider the aqueous solution equilibrium, $A(aq) \rightleftharpoons 3 B(aq)$. The product, B. has an absorption in the UV range of the spectrum at 450 nm, with

	Molar Absorptivity, $\varepsilon = 50$. M ⁻¹ cm ⁻¹					
[A]	solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A, $J_0 = 0.005$ M, and the solution is allowed to reach equilibrium. equilibrium, the % transmittance of B is 30%.					
1.	What is the approximate concentration of B at equilibrium?					
<	(A) 0.0070 M					
2.	What is the approximate value of the equilibrium constant for the above reaction?					
	(A) $1.2x10^{-8}$ (B) 2.6 (C) $1.3x10^{-4}$ (D) $3.7x10^{-2}$					
	 For #3 - #5: Consider he gas phase reaction, 2 Br₂(g) + 4 NO(g) ⇌ 4 NOBr(g), K_c = 50. at 400 K. The enthalpy change for this reaction is ΔH = +75 kJ 3. For the above equilibrium reaction, if the temperature is decreased, the ratio 					
	[NOBr]/[Br ₂] will and K _c will					
	(A) increase , remain constant (B) increase , decrease					
	(C) decrease, remain constant (D) decrease, decrease					
4.	For the above equilibrium reaction, if NO(g) is added to the mixture, the ratio [NOBr]/[Br ₂] will and K_c will					
	(A) decrease , remain constant (B) decrease , decrease					
	(C) increase, remain constant (D) increase, decrease					
5.	For the above reaction, if Ar(g) is added to the mixture in a container at fixed					

total pressure, the ratio [NOBr]/[Br₂] will _____ and K_c will ____.

(A) increase, remain constant

(B) increase, decrease

(C) remain constant, remain constant

(D) decrease, remain constant)

6.		uilibrium, H₂(gas) + l₂ the container is decr e 		
	(A) decrease,	decrease	(B) increa	ase , remain constant
	(C) remain cons	stant , remain constar	nt (D) decre	ease , remain constant
7.	Which of the following	owing statements is/a	are NOT correct .	
	(i) the solubility	of most solids in a liq	uid increases with	rising temperature.
X	(ii) the solubility	of most gases in a li	quid increases with	rising temperature.
-	(iii) when a soli	d is dissolved in a liqu	iid, the entropy inc	reases.
X	(iv) ΔH _{soln} must	be negative for a soli	d to dissolve in a li	quid.
	(A) ii & iv	(B) iv only	(C) i & iii	(D) ii only
		124 grams of Ethylen the density of the sol		
8.	Molarity of Eth	ylene Glycol in the ab	ove solution is app	proximately:
((A) 2.2 M	(B) 2.7 M	(C) 3.3 M	(D) 3.5 M
9.	The mole fracti	on of Ethylene Glyco	I in the above solu	tion is approximately:
	(A) 0.21	(B) 0.057	(C) 0.060	(D) 0.057
10.	-		•	ater is 16 ppb (parts per senic in the sample is:
	(A) 1.6x10 ⁻¹⁰ %	(B) 1.6x10 ⁻⁹ %	(C) 1.6x10 ⁻⁶ %	(D) 1.6x10 ⁻⁸ %
11.	Approximately h		thylene Glycol wou	lycol ($C_2H_6O_2$) in water. Ild you have to add to
	(A) 80 g	(B) 65 g	(C) 56 g	(D) 41 g
12.	• •	roximate NH ₃ Molari t (solution density = 0.	•	∕hich the NH₃ mass
	(A) 6.5 M	(B) 5.9 M	(C) 3.7 M	(D) 5.4 M
13.	• •	roximate weight % of molal Glucose?	Glucose C ₆ H ₁₂ O ₆	in an aqueous solution
((A) 12.6 %	(B) 1.4 %	(C) 14.4 %	(D) 0.14%

14. When 2.0 grams of an Enzyme are dissolved in 600 mL of aqueous solution, the osmotic pressure at 25 °C is 9.5 torr. The Molar Mass of the Enzyme is approximately:						
(A) 4.4x10 ³ g/mol	(B) 6.5x10 ³	g/mol (C) 2.3x10 ³	g/mol			
(D) Cannot be dete	rmined without the	Osmotic Pressure Dep	ression Constant			
15. What is the osmotic aluminum nitrate [Al 25 °C?		vhen 9.5x10⁴ mol of the ed in 600 mL of aqueou				
(A) 0.16 torr	(B) 29 torr	(C) 105 torr	(D) 118 torr			
(K _f =1.9 °C/m), the fr	16. When 60 grams of an unknown compound is dissolved in 500 g of water (K _f =1.9 °C/m), the freezing point of the solution is -2.20 °C. The Molar Mass of the compound is approximately					
(A) 104 g/mol	(B) 52 g/mol	(C) 70 g/mol (E	D) 86 g/mol			
17. The vapor pressure of pure water at 60 °C is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose (C ₆ H ₁₂ O ₆) to 300 grams of water at 60 °C?						
(A) 137.4 torr	(B) 102.8 torr	(C) 142.6 torr	(D) 6.5 torr			
18. Which one of the fo	18. Which one of the following solutions has the lowest boiling point?					
(A) 0.10 m Mg₃(PO	4)2	(B) 0.32 m NH ₄ Cl				
(C) 0.20 m Na ₂ SO ₄		(D) 0.11 m K ₃ AsO ₄	>			
19. Consider the strong phosphate, Na ₃ PO ₄	_	m sulfate, Na ₂ SO ₄ , and	sodium			
	If 350 mL of 0.30 M Na ₂ SO ₄ (aq) is added to 250 mL of 0.50 M Na ₃ PO ₄ (aq), the sodium ion concentration (i.e Molarity) in the mixture, [Na ⁺], is approximately:					
(A) 0.59 M	(B) 0.046 M	(C) 0.98 M	(D) 0.35 M			

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

Version B

(12) 1. Consider the equilibrium between $N_2(g)$, $H_2(g)$, $N_3(g)$: $N_2(g) + 3 H_2(g) \not \supseteq 2 NH_3(g)$. The value of K_c at 30 °C is 8.0. The Enthalpy change for this reaction is $\Delta H = -92.0 \text{ kJ}$.

Calculate the temperature, in °C, at which the equilibrium constant, Kc, is 1.00x10-4...

$$h(k_{c})_{k_{c}} = -\frac{840}{R} \left(\frac{1}{R} - \frac{1}{R} \right)$$

$$\frac{1}{R} = \frac{1}{R} - \frac{2}{840} h(k_{c})_{k_{c}}$$

$$= \frac{1}{300} \left(\frac{8.31}{1 - 9.20 \times 10^{3}} \right) h\left(\frac{1.00 \times 10^{-4}}{8.0} \right)$$

$$\frac{1}{R} = \frac{1}{1 - 2} - \frac{2.31}{1 - 9.20 \times 10^{3}} h\left(\frac{1.00 \times 10^{-4}}{8.0} \right)$$

$$\frac{1}{R} = \frac{1}{1 - 2.281 \times 10^{3}} R^{-1}$$

(12) 2. The vapor pressure of pure Ethylbenzene, C₆H₅C₂H₅(I) [M=106], is 74.0 torr at 70 °C. When 50 grams of an unknown non-volatile solute, X, is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at 70 °C is 62.9 torr.

Calculate the Molar Mass of the unknown, X, in grams/mol

$$\frac{P_{ER} = \chi_{ER} E_{R}}{\chi_{ER}} = \frac{1}{\rho_{ER}} =$$

NER = 0.85-NEB + 0.85-NX