CHEM 1423 - Exam 2 – March 2, 2017 - Version A

Constants and Conversion Factors

R = 0.082 L-atm/mol-K

R = 8.31 J/mol-K

1 atm. = 760 torr

Molar Masses:	C ₂ H ₆ O ₂ - 62.	H₂O - 18.	C ₆ H ₁₂ O ₆ - 180.
	NH₃ - 17,	C ₆ H ₅ C ₂ H ₅ (I) - 106	

Beer-Lambert Law: $A = \log\left(\frac{I_o}{I}\right) = \varepsilon bc$

CHEM 1423 - Exam 2 – March 2, 2017 - Version A

Name_____

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1 - #3: Consider he gas phase reaction, $2 \operatorname{Br}_2(g) + 4 \operatorname{NO}(g) \rightleftharpoons 4 \operatorname{NOBr}(g)$, K_c = 50. at 400 K. The enthalpy change for this reaction is $\Delta H = +75 \text{ kJ}$

- 1. For the above equilibrium reaction, if NO(g) is added to the mixture, the ratio [NOBr]/[Br₂] will ______ and K_c will _____.
 - (A) decrease , remain constant (B) increase , decrease
 - (C) increase , remain constant (D) decrease , decrease
- 2. For the above equilibrium reaction, if the temperature is **decreased**, the ratio [NOBr]/[Br₂] will _____ and K_c will _____.
 - (A) decrease, remain constant (B) increase, decrease
 - (C) increase , remain constant (D) decrease , decrease
- 3. For the above reaction, if Ar(g) is added to the mixture in a container at fixed **total pressure**, the ratio [NOBr]/[Br₂] will _____ and K_c will _____.
 - (A) decrease , remain constant (B) increase , decrease
 - (C) remain constant, remain constant (D) increase, remain constant
- Consider the equilibrium, H₂(gas) + I₂(solid) ⇒ 2 HI(gas) If the volume of the container is **decreased**, the ratio, [HI(g)]/[H₂(g), will _____ and K_c will _____
 - (A) decrease , decrease (B) decrease , remain constant
 - (C) remain constant, remain constant (D) increase, remain constant

For #5-#6: Consider the aqueous solution equilibrium, $A(aq) \rightleftharpoons 3 B(aq)$. The product, B, has an absorption in the UV range of the spectrum at 450 nm, with a Molar Absorptivity, $\varepsilon = 50$. M⁻¹ cm⁻¹

A solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A, $[A]_{\circ} = 0.005$ M, and the solution is allowed to reach equilibrium. At equilibrium, the % transmittance of B is 30%.

- 5. What is the approximate concentration of B at equilibrium?
 - (A) 0.021 M (B) 0.0023 M (C) 0.0070 M (D) 0.00023 M

Version A

6. What is the approximate value of the equilibrium constant for the above reaction?

(A) 1.3x10⁻⁴ (B) 2.6 (C) 1.2x10⁻⁸ (D) 3.7x10⁻²

- 7. Which of the following statements is/are **NOT correct**.
 - (i) the solubility of most solids in a liquid increases with rising temperature.
 - (ii) the solubility of most gases in a liquid increases with rising temperature.
 - (iii) when a solid is dissolved in a liquid, the entropy increases.
 - (iv) ΔH_{soln} must be negative for a solid to dissolve in a liquid.
 - (A) ii only (B) iv only (C) i & iii (D) ii & iv
- 8. A sample of water contains of Arsenic in a sample of water is 16 ppb (parts per billion) of Arsenic. Therefore, the Weight Percent of Arsenic in the sample is:
 - (A) $1.6x10^{-10}$ % (B) $1.6x10^{-6}$ % (C) $1.6x10^{-9}$ % (D) $1.6x10^{-8}$ %

For #9 - #10: When 124 grams of Ethylene Glycol ($C_2H_6O_2$), is added to 600 grams of water, the density of the solution is 0.80 g/mL.

9. The **Molarity** of Ethylene Glycol in the above solution is approximately:

(A) 3.3 M (B) 2.7 M (C) 2.2 M	(D) 3.5 M
-------------------------------	-----------

- 10. The **mole fraction** of Ethylene Glycol in the above solution is approximately:
 - (A) 0.21 (B) 0.057 (C) 0.060 (D) 0.17
- 11. You want to prepare a 1.5 **molal** solution of Ethylene Glycol (C₂H₆O₂) in water. Approximately how many grams of Ethylene Glycol would you have to add to 600 grams of water to prepare this solution?
 - (A) 56 g (B) 65 g (C) 80 g (D) 41 g
- 12. What is the approximate weight % of Glucose C₆H₁₂O₆ in an aqueous solution containing 0.80 **molal** Glucose?
 - (A) 0.14 % (B) 1.4 % (C) 14.4 % (D) 12.6%
- 13. What is the approximate NH₃ **Molarity** in a solution in which the NH₃ mass percent is 10% (solution density = 0.92 g/mL)?
 - (A) 6.5 M (B) 5.4 M (C) 3.7 M (D) 5.9 M

Version A

- 14. When 60 grams of an unknown compound is dissolved in 500 g of water (K_f=1.9 °C/m), the freezing point of the solution is -2.20 °C. The Molar Mass of the compound is approximately
 - (A) 52 g/mol (B) 104 g/mol (C) 70 g/mol (D) 86 g/mol
- 15. What is the osmotic pressure, **in torr**, when 9.5×10^{-4} mol of the strong electrolyte, aluminum nitrate [Al(NO₃)₃], is dissolved in 600 mL of aqueous solution at 25 °C?
 - (A) 0.16 torr (B) 29 torr (C) 118 torr (D) 105 torr
- 16. When 2.0 grams of an Enzyme are dissolved in 600 mL of aqueous solution, the osmotic pressure at 25 °C is 9.5 torr. The Molar Mass of the Enzyme is approximately:
 - (A) 6.5x10³ g/mol (B) 4.4x10³ g/mol (C) 2.3x10³ g/mol
 - (D) Cannot be determined without the Osmotic Pressure Depression Constant
- 17. The vapor pressure of pure water at 60 °C is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose (C₆H₁₂O₆) to 300 grams of water at 60 °C?
 - (A) 137.4 torr (B) 102.8 torr (C) 6.4 torr (D) 142.6 torr
- 18. Consider the strong electrolytes, sodium sulfate, Na₂SO₄, and sodium phosphate, Na₃PO₄.

If 350 mL of 0.30 M Na₂SO₄(aq) is added to 250 mL of 0.50 M Na₃PO₄(aq), the sodium ion concentration (i.e Molarity) in the mixture, [Na⁺], is approximately:

- (A) 0.59 M (B) 0.98 M (C) 046 M (D) 0.35 M
- 19. Which one of the following solutions has the lowest boiling point?
 - (A) 0.10 m Mg₃(PO₄)₂ (B) 0.11 m K₃AsO₄
 - (C) 0.20 m Na₂SO₄ (D) 0.32 m NH₄Cl

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

Version A

(12) 1. Consider the equilibrium between N₂(g), H₂(g), NH₃(g): N₂(g) + 3 H₂(g) \rightleftharpoons 2 NH₃(g). The value of K_c at 30 °C is 8.0. The Enthalpy change for this reaction is Δ H = -92.0 kJ.

Calculate the temperature, in °C, at which the equilibrium constant, K_c, is 1.00x10⁻⁴...

(12) 2. The vapor pressure of pure Ethylbenzene, C₆H₅C₂H₅(I) [M=106], is 74.0 torr at 70 °C. When 50 grams of an unknown non-volatile solute, X, is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at 70 °C is 62.9 torr.

Calculate the Molar Mass of the unknown, X, in grams/mol

CHEM 1423 - Exam 2 – March 2, 2017 - Version B

Constants and Conversion Factors

R = 0.082 L-atm/mol-K

R = 8.31 J/mol-K

1 atm. = 760 torr

Molar Masses:	C ₂ H ₆ O ₂ - 62.	H₂O - 18.	C ₆ H ₁₂ O ₆ - 180.
	NH₃ - 17,	C ₆ H ₅ C ₂ H ₅ (I) - 106	

Beer-Lambert Law: $A = \log\left(\frac{I_o}{I}\right) = \varepsilon bc$

CHEM 1423 - Exam 2 – March 2, 2017 - Version B

Name_____

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1-#2: Consider the aqueous solution equilibrium, $A(aq) \rightleftharpoons 3 B(aq)$. The product, B, has an absorption in the UV range of the spectrum at 450 nm, with a Molar Absorptivity, $\varepsilon = 50$. M⁻¹ cm⁻¹

A solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A, $[A]_{\circ} = 0.005$ M, and the solution is allowed to reach equilibrium. At equilibrium, the % transmittance of B is 30%.

1. What is the approximate concentration of B at equilibrium?

(A) 0.0070 M (B) 0.0023 M (C) 0.021 M (D) 0.00023 M

2. What is the approximate value of the equilibrium constant for the above reaction?

(A) 1.2x10⁻⁸ (B) 2.6 (C) 1.3x10⁻⁴ (D) 3.7x10⁻²

For #3 - #5: Consider he gas phase reaction, $2 \operatorname{Br}_2(g) + 4 \operatorname{NO}(g) \rightleftharpoons 4 \operatorname{NOBr}(g)$, K_c = 50. at 400 K. The enthalpy change for this reaction is $\Delta H = +75 \text{ kJ}$

- 3. For the above equilibrium reaction, if the temperature is **decreased**, the ratio [NOBr]/[Br₂] will _____ and K_c will _____.
 - (A) increase, remain constant (B) increase, decrease
 - (C) decrease , remain constant (D) decrease , decrease
- 4. For the above equilibrium reaction, if NO(g) is added to the mixture, the ratio [NOBr]/[Br₂] will _____ and K_c will _____.
 - (A) decrease, remain constant (B) decrease, decrease
 - (C) increase, remain constant (D) increase, decrease
- 5. For the above reaction, if Ar(g) is added to the mixture in a container at fixed **total pressure**, the ratio [NOBr]/[Br₂] will _____ and K_c will _____.
 - (A) increase , remain constant (B) increase , decrease
 - (C) remain constant , remain constant (D) decrease , remain constant

Version B

- Consider the equilibrium, H₂(gas) + I₂(solid) ⇒ 2 HI(gas) If the volume of the container is **decreased**, the ratio, [HI(g)]/[H₂(g), will _____ and K_c will _____
 - (A) decrease , decrease (B) increase , remain constant
 - (C) remain constant , remain constant (D) decrease , remain constant
- 7. Which of the following statements is/are **NOT correct**.
 - (i) the solubility of most solids in a liquid increases with rising temperature.
 - (ii) the solubility of most gases in a liquid .increases with rising temperature.
 - (iii) when a solid is dissolved in a liquid, the entropy increases.
 - (iv) ΔH_{soln} must be negative for a solid to dissolve in a liquid.
 - (A) ii & iv (B) iv only (C) i & iii (D) ii only

For #8 - #9: When 124 grams of Ethylene Glycol ($C_2H_6O_2$), is added to 600 grams of water, the density of the solution is 0.80 g/mL.

8. **Molarity** of Ethylene Glycol in the above solution is approximately:

(A) 2.2 M	(B) 2.7 M	(C) 3.3 M	(D) 3.5 M
(, ,	(=) =	(•) ••••	(=) ••••

9. The **mole fraction** of Ethylene Glycol in the above solution is approximately:

- 10. A sample of water contains of Arsenic in a sample of water is 16 ppb (parts per billion) of Arsenic. Therefore, the Weight Percent of Arsenic in the sample is:
 - (A) 1.6x10⁻¹⁰ % (B) 1.6x10⁻⁹ % (C) 1.6x10⁻⁶ % (D) 1.6x10⁻⁸ %
- 11. You want to prepare a 1.5 **molal** solution of Ethylene Glycol (C₂H₆O₂) in water. Approximately how many grams of Ethylene Glycol would you have to add to 600 grams of water to prepare this solution?
 - (A) 80 g (B) 65 g (C) 56 g (D) 41 g
- 12. What is the approximate NH₃ **Molarity** in a solution in which the NH₃ mass percent is 10% (solution density = 0.92 g/mL)?
 - (A) 6.5 M (B) 5.9 M (C) 3.7 M (D) 5.4 M
- 13. What is the approximate weight % of Glucose C₆H₁₂O₆ in an aqueous solution containing 0.80 **molal** Glucose?
 - (A) 12.6 % (B) 1.4 % (C) 14.4 % (D) 0.14%

Version B

- 14. When 2.0 grams of an Enzyme are dissolved in 600 mL of aqueous solution, the osmotic pressure at 25 °C is 9.5 torr. The Molar Mass of the Enzyme is approximately:
 - (A) 4.4x10³ g/mol (B) 6.5x10³ g/mol (C) 2.3x10³ g/mol
 - (D) Cannot be determined without the Osmotic Pressure Depression Constant
- 15. What is the osmotic pressure, **in torr**, when 9.5×10^{-4} mol of the strong electrolyte, aluminum nitrate [Al(NO₃)₃], is dissolved in 600 mL of aqueous solution at 25 °C?
 - (A) 0.16 torr (B) 29 torr (C) 105 torr (D) 118 torr
- 16. When 60 grams of an unknown compound is dissolved in 500 g of water (K_f=1.9 °C/m), the freezing point of the solution is -2.20 °C. The Molar Mass of the compound is approximately
 - (A) 104 g/mol (B) 52 g/mol (C) 70 g/mol (D) 86 g/mol
- 17. The vapor pressure of pure water at 60 °C is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose ($C_6H_{12}O_6$) to 300 grams of water at 60 °C?
 - (A) 137.4 torr (B) 102.8 torr (C) 142.6 torr (D) 6.5 torr
- 18. Which one of the following solutions has the lowest boiling point?

(A) 0.10 m Mg ₃ (PO ₄) ₂	(B) 0.32 m NH₄CI
(0) 0.00 11 00	

- (C) $0.20 \text{ m Na}_2\text{SO}_4$ (D) $0.11 \text{ m K}_3\text{AsO}_4$
- 19. Consider the strong electrolytes, sodium sulfate, Na₂SO₄, and sodium phosphate, Na₃PO₄.

If 350 mL of 0.30 M Na₂SO₄(aq) is added to 250 mL of 0.50 M Na₃PO₄(aq), the sodium ion concentration (i.e Molarity) in the mixture, [Na⁺], is approximately:

(A) 0.59 M (B) 0.046 M (C) 0.98 M (D) 0.35 M

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

Version **B**

(12) 1. Consider the equilibrium between N₂(g), H₂(g), NH₃(g): N₂(g) + 3 H₂(g) \rightleftharpoons 2 NH₃(g). The value of K_c at 30 °C is 8.0. The Enthalpy change for this reaction is Δ H = -92.0 kJ.

Calculate the temperature, in °C, at which the equilibrium constant, K_c, is 1.00x10⁻⁴...

(12) 2. The vapor pressure of pure Ethylbenzene, C₆H₅C₂H₅(I) [M=106], is 74.0 torr at 70 °C. When 50 grams of an unknown non-volatile solute, X, is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at 70 °C is 62.9 torr.

Calculate the Molar Mass of the unknown, X, in grams/mol