CHEM 1423 - Exam 2 - March 2, 2017 - Version A

Constants and Conversion Factors

$\mathrm{R}=0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
1 atm. $=760$ torr

Molar Masses: $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}-62$.
$\mathrm{H}_{2} \mathrm{O}-18$.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-180$.

$$
\mathrm{NH}_{3}-17, \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{I})-106
$$

Beer-Lambert Law: $A=\log \left(\frac{I_{o}}{I}\right)=\varepsilon b c$

CHEM 1423 - Exam 2 - March 2, 2017 - Version A

Name \qquad

(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

For \#1-\#3: Consider he gas phase reaction, $2 \mathrm{Br}_{2}(\mathrm{~g})+4 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 4 \mathrm{NOBr}(\mathrm{g})$, $\mathrm{K}_{\mathrm{c}}=50$. at 400 K . The enthalpy change for this reaction is $\Delta \mathrm{H}=+75 \mathrm{~kJ}$

1. For the above equilibrium reaction, if $\mathrm{NO}(\mathrm{g})$ is added to the mixture, the ratio [NOBr$] /\left[\mathrm{Br}_{2}\right]$ will \qquad and K_{c} will \qquad .
(A) decrease, remain constant
(B) increase, decrease
(C) increase, remain constant
(D) decrease, decrease
2. For the above equilibrium reaction, if the temperature is decreased, the ratio [NOBr$] /\left[\mathrm{Br}_{2}\right.$] will \qquad and K_{c} will \qquad
(A) decrease, remain constant
(B) increase, decrease
(C) increase, remain constant
(D) decrease, decrease
3. For the above reaction, if $\operatorname{Ar}(\mathrm{g})$ is added to the mixture in a container at fixed total pressure, the ratio $[\mathrm{NOBr}] /\left[\mathrm{Br}_{2}\right]$ will \qquad and K_{c} will \qquad _.
(A) decrease, remain constant
(B) increase, decrease
(C) remain constant, remain constant
(D) increase, remain constant
4. Consider the equilibrium, H_{2} (gas) $+\mathrm{I}_{2}$ (solid) $\rightleftharpoons 2 \mathrm{HI}$ (gas) If the volume of the container is decreased, the ratio, $[\mathrm{HI}(\mathrm{g})] /\left[\mathrm{H}_{2}(\mathrm{~g})\right.$, will \qquad and K_{c} will \qquad
(A) decrease, decrease
(B) decrease, remain constant
(C) remain constant, remain constant
(D) increase, remain constant

For \#5-\#6: Consider the aqueous solution equilibrium, $A(a q) \rightleftharpoons 3 B(a q)$. The product, B, has an absorption in the UV range of the spectrum at 450 nm , with a Molar Absorptivity, $\varepsilon=50 . \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
A solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A, $[A]_{\circ}=0.005 \mathrm{M}$, and the solution is allowed to reach equilibrium. At equilibrium, the \% transmittance of B is 30%.
5. What is the approximate concentration of B at equilibrium?
(A) 0.021 M
(B) 0.0023 M
(C) 0.0070 M
(D) 0.00023 M

Version A

6. What is the approximate value of the equilibrium constant for the above reaction?
(A) 1.3×10^{-4}
(B) 2.6
(C) 1.2×10^{-8}
(D) 3.7×10^{-2}
7. Which of the following statements is/are NOT correct.
(i) the solubility of most solids in a liquid increases with rising temperature.
(ii) the solubility of most gases in a liquid increases with rising temperature.
(iii) when a solid is dissolved in a liquid, the entropy increases.
(iv) $\Delta \mathrm{H}_{\text {soln }}$ must be negative for a solid to dissolve in a liquid.
(A) ii only
(B) iv only
(C) i \& iii
(D) ii \& iv
8. A sample of water contains of Arsenic in a sample of water is 16 ppb (parts per billion) of Arsenic. Therefore, the Weight Percent of Arsenic in the sample is:
(A) $1.6 \times 10^{-10} \%$
(B) $1.6 \times 10^{-6} \%$
(C) $1.6 \times 10^{-9} \%$
(D) $1.6 \times 10^{-8} \%$

For \#9-\#10: When 124 grams of Ethylene Glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$, is added to 600 grams of water, the density of the solution is $0.80 \mathrm{~g} / \mathrm{mL}$.
9. The Molarity of Ethylene Glycol in the above solution is approximately:
(A) 3.3 M
(B) 2.7 M
(C) 2.2 M
(D) 3.5 M
10. The mole fraction of Ethylene Glycol in the above solution is approximately:
(A) 0.21
(B) 0.057
(C) 0.060
(D) 0.17
11. You want to prepare a 1.5 molal solution of Ethylene Glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in water. Approximately how many grams of Ethylene Glycol would you have to add to 600 grams of water to prepare this solution?
(A) 56 g
(B) 65 g
(C) 80 g
(D) 41 g
12. What is the approximate weight $\%$ of Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in an aqueous solution containing 0.80 molal Glucose?
(A) 0.14%
(B) 1.4%
(C) 14.4%
(D) 12.6%
13. What is the approximate NH_{3} Molarity in a solution in which the NH_{3} mass percent is 10% (solution density $=0.92 \mathrm{~g} / \mathrm{mL}$)?
(A) 6.5 M
(B) 5.4 M
(C) 3.7 M
(D) 5.9 M

Version A

14. When 60 grams of an unknown compound is dissolved in 500 g of water $\left(\mathrm{K}_{\mathrm{f}}=1.9^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-2.20^{\circ} \mathrm{C}$. The Molar Mass of the compound is approximately
(A) $52 \mathrm{~g} / \mathrm{mol}$
(B) $104 \mathrm{~g} / \mathrm{mol}$
(C) $70 \mathrm{~g} / \mathrm{mol}$
(D) $86 \mathrm{~g} / \mathrm{mol}$
15. What is the osmotic pressure, in torr, when $9.5 \times 10^{-4} \mathrm{~mol}$ of the strong electrolyte, aluminum nitrate $\left[\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right]$, is dissolved in 600 mL of aqueous solution at $25^{\circ} \mathrm{C}$?
(A) 0.16 torr
(B) 29 torr
(C) 118 torr
(D) 105 torr
16. When 2.0 grams of an Enzyme are dissolved in 600 mL of aqueous solution, the osmotic pressure at $25^{\circ} \mathrm{C}$ is 9.5 torr. The Molar Mass of the Enzyme is approximately:
(A) $6.5 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(B) $4.4 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(C) $2.3 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(D) Cannot be determined without the Osmotic Pressure Depression Constant
17. The vapor pressure of pure water at $60^{\circ} \mathrm{C}$ is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ to 300 grams of water at $60^{\circ} \mathrm{C}$?
(A) 137.4 torr
(B) 102.8 torr
(C) 6.4 torr
(D) 142.6 torr
18. Consider the strong electrolytes, sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

If 350 mL of $0.30 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is added to 250 mL of $0.50 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$, the sodium ion concentration (i.e Molarity) in the mixture, $\left[\mathrm{Na}^{+}\right]$, is approximately:
(A) 0.59 M
(B) 0.98 M
(C) 046 M
(D) 0.35 M
19. Which one of the following solutions has the lowest boiling point?
(A) $0.10 \mathrm{~m} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $0.11 \mathrm{~m} \mathrm{~K}_{3} \mathrm{AsO}_{4}$
(C) $0.20 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) $0.32 \mathrm{~m} \mathrm{NH}_{4} \mathrm{Cl}$

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

REMEMBER TO SHOW YOUR WORK FOR CREDIT

Version A

(12) 1. Consider the equilibrium between $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{NH}_{3}(\mathrm{~g})$:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$. The value of K_{c} at $30^{\circ} \mathrm{C}$ is 8.0 . The Enthalpy change for this reaction is $\Delta \mathrm{H}=-92.0 \mathrm{~kJ}$.

Calculate the temperature, in ${ }^{\circ} \mathrm{C}$, at which the equilibrium constant, K_{c}, is 1.00×10^{-4}. .
(12) 2. The vapor pressure of pure Ethylbenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{I})[\mathrm{M}=106]$, is 74.0 torr at $70^{\circ} \mathrm{C}$. When 50 grams of an unknown non-volatile solute, X , is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at $70^{\circ} \mathrm{C}$ is 62.9 torr.

Calculate the Molar Mass of the unknown, X , in grams $/ \mathrm{mol}$

CHEM 1423 - Exam 2 - March 2, 2017 - Version B

Constants and Conversion Factors

$\mathrm{R}=0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
1 atm. $=760$ torr

Molar Masses: $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}-62$.
$\mathrm{H}_{2} \mathrm{O}-18$.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-180$.

$$
\mathrm{NH}_{3}-17, \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{I})-106
$$

Beer-Lambert Law: $A=\log \left(\frac{I_{o}}{I}\right)=\varepsilon b c$

CHEM 1423 - Exam 2 - March 2, 2017 - Version B

Name \qquad

(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

For \#1-\#2: Consider the aqueous solution equilibrium, $A(a q) \rightleftharpoons 3 B(a q)$.
The product, B, has an absorption in the UV range of the spectrum at 450 nm , with a Molar Absorptivity, $\varepsilon=50 . \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

A solution is prepared in a 1.5 cm cell with an initial concentration of the reactant, A , $[A]_{\circ}=0.005 \mathrm{M}$, and the solution is allowed to reach equilibrium. At equilibrium, the \% transmittance of B is 30%.

1. What is the approximate concentration of B at equilibrium?
(A) 0.0070 M
(B) 0.0023 M
(C) 0.021 M
(D) 0.00023 M
2. What is the approximate value of the equilibrium constant for the above reaction?
(A) 1.2×10^{-8}
(B) 2.6
(C) 1.3×10^{-4}
(D) 3.7×10^{-2}

For \#3 - \#5: Consider he gas phase reaction, $2 \mathrm{Br}_{2}(\mathrm{~g})+4 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 4 \mathrm{NOBr}(\mathrm{g})$, $\mathrm{K}_{\mathrm{c}}=50$. at 400 K . The enthalpy change for this reaction is $\Delta \mathrm{H}=+75 \mathrm{~kJ}$
3. For the above equilibrium reaction, if the temperature is decreased, the ratio [NOBr$] /\left[\mathrm{Br}_{2}\right]$ will \qquad and K_{c} will \qquad .
(A) increase , remain constant
(B) increase , decrease
(C) decrease, remain constant
(D) decrease, decrease
4. For the above equilibrium reaction, if $\mathrm{NO}(\mathrm{g})$ is added to the mixture, the ratio [NOBr$] /\left[\mathrm{Br}_{2}\right]$ will \qquad and K_{c} will \qquad .
(A) decrease, remain constant
(B) decrease, decrease
(C) increase, remain constant
(D) increase, decrease
5. For the above reaction, if $\operatorname{Ar}(\mathrm{g})$ is added to the mixture in a container at fixed total pressure, the ratio $[\mathrm{NOBr}] /\left[\mathrm{Br}_{2}\right]$ will \qquad and K_{c} will \qquad .
(A) increase, remain constant
(B) increase, decrease
(C) remain constant, remain constant
(D) decrease, remain constant

Version B

6. Consider the equilibrium, H_{2} (gas) $+\mathrm{I}_{2}$ (solid) $\rightleftharpoons 2 \mathrm{HI}$ (gas) If the volume of the container is decreased, the ratio, $[\mathrm{HI}(\mathrm{g})] /\left[\mathrm{H}_{2}(\mathrm{~g})\right.$, will \qquad and K_{c} will \qquad
(A) decrease, decrease
(B) increase, remain constant
(C) remain constant, remain constant
(D) decrease, remain constant
7. Which of the following statements is/are NOT correct.
(i) the solubility of most solids in a liquid increases with rising temperature.
(ii) the solubility of most gases in a liquid .increases with rising temperature.
(iii) when a solid is dissolved in a liquid, the entropy increases.
(iv) $\Delta \mathrm{H}_{\text {soln }}$ must be negative for a solid to dissolve in a liquid.
(A) ii \& iv
(B) iv only
(C) i \& iii
(D) ii only

For \#8 - \#9: When 124 grams of Ethylene Glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$, is added to 600 grams of water, the density of the solution is $0.80 \mathrm{~g} / \mathrm{mL}$.
8. Molarity of Ethylene Glycol in the above solution is approximately:
(A) 2.2 M
(B) 2.7 M
(C) 3.3 M
(D) 3.5 M
9. The mole fraction of Ethylene Glycol in the above solution is approximately:
(A) 0.21
(B) 0.057
(C) 0.060
(D) 0.057
10. A sample of water contains of Arsenic in a sample of water is 16 ppb (parts per billion) of Arsenic. Therefore, the Weight Percent of Arsenic in the sample is:
(A) $1.6 \times 10^{-10} \%$
(B) $1.6 \times 10^{-9} \%$
(C) $1.6 \times 10^{-6} \%$
(D) $1.6 \times 10^{-8} \%$
11. You want to prepare a 1.5 molal solution of Ethylene Glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in water. Approximately how many grams of Ethylene Glycol would you have to add to 600 grams of water to prepare this solution?
(A) 80 g
(B) 65 g
(C) 56 g
(D) 41 g
12. What is the approximate NH_{3} Molarity in a solution in which the NH_{3} mass percent is 10% (solution density $=0.92 \mathrm{~g} / \mathrm{mL}$)?
(A) 6.5 M
(B) 5.9 M
(C) 3.7 M
(D) 5.4 M
13. What is the approximate weight $\%$ of Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in an aqueous solution containing 0.80 molal Glucose?
(A) 12.6%
(B) 1.4%
(C) 14.4%
(D) 0.14%

Version B

14. When 2.0 grams of an Enzyme are dissolved in 600 mL of aqueous solution, the osmotic pressure at $25^{\circ} \mathrm{C}$ is 9.5 torr. The Molar Mass of the Enzyme is approximately:
(A) $4.4 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(B) $6.5 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(C) $2.3 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
(D) Cannot be determined without the Osmotic Pressure Depression Constant
15. What is the osmotic pressure, in torr, when $9.5 \times 10^{-4} \mathrm{~mol}$ of the strong electrolyte, aluminum nitrate $\left[\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right]$, is dissolved in 600 mL of aqueous solution at $25^{\circ} \mathrm{C}$?
(A) 0.16 torr
(B) 29 torr
(C) 105 torr
(D) 118 torr
16. When 60 grams of an unknown compound is dissolved in 500 g of water $\left(\mathrm{K}_{\mathrm{f}}=1.9^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-2.20^{\circ} \mathrm{C}$. The Molar Mass of the compound is approximately
(A) $104 \mathrm{~g} / \mathrm{mol}$
(B) $52 \mathrm{~g} / \mathrm{mol}$
(C) $70 \mathrm{~g} / \mathrm{mol}$
(D) $86 \mathrm{~g} / \mathrm{mol}$
17. The vapor pressure of pure water at $60^{\circ} \mathrm{C}$ is 149 torr. What is the approximate vapor pressure of a solution prepared by adding 135 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ to 300 grams of water at $60^{\circ} \mathrm{C}$?
(A) 137.4 torr
(B) 102.8 torr
(C) 142.6 torr
(D) 6.5 torr
18. Which one of the following solutions has the lowest boiling point?
(A) $0.10 \mathrm{~m} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $0.32 \mathrm{~m} \mathrm{NH}_{4} \mathrm{Cl}$
(C) $0.20 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) $0.11 \mathrm{~m} \mathrm{~K}_{3} \mathrm{AsO}_{4}$
19. Consider the strong electrolytes, sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

If 350 mL of $0.30 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is added to 250 mL of $0.50 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$, the sodium ion concentration (i.e Molarity) in the mixture, $\left[\mathrm{Na}^{+}\right]$, is approximately:
(A) 0.59 M
(B) 0.046 M
(C) 0.98 M
(D) 0.35 M

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES:

Version B

(12) 1. Consider the equilibrium between $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{NH}_{3}(\mathrm{~g})$:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$. The value of K_{c} at $30^{\circ} \mathrm{C}$ is 8.0 . The Enthalpy change for this reaction is $\Delta \mathrm{H}=-92.0 \mathrm{~kJ}$.

Calculate the temperature, in ${ }^{\circ} \mathrm{C}$, at which the equilibrium constant, K_{c}, is 1.00×10^{-4}. .
(12) 2. The vapor pressure of pure Ethylbenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{I})[\mathrm{M}=106]$, is 74.0 torr at $70^{\circ} \mathrm{C}$. When 50 grams of an unknown non-volatile solute, X , is added to 265 grams of Ethylbenzene, the vapor pressure of the solution at $70^{\circ} \mathrm{C}$ is 62.9 torr.

Calculate the Molar Mass of the unknown, X , in grams $/ \mathrm{mol}$

