CHEM 1423 - Exam 3 – March 31, 2016 - Version A

Name_____

(60) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

- 1. The **pH** of a 0.10 M solution of Hypoiodous acid, HIO, is 5.80. What is the approximate Acid Dissociation Constant of HIO?
 - (A) 2.5×10^{-11} (B) 1.6×10^{-5} (C) 4.0×10^{-11}
 - (D) None of the above
- 2. The **pH** of a 0.05 M solution of a weak base, B, is 8.6. Therefore, the base equilibrium constant is approximately:
 - (A) $1.3x10^{-16}$ (B) $7.4x10^{-6}$ (C) $3.2x10^{-10}$ (D) $1.6x10^{-11}$
- 3. Which of the following aqueous solutions is/are basic (pH > 7)?
 - (i) Ammonium Chloride (NH₄Cl)
 - (ii) Potassium Nitrate (KNO₃)
 - (iii) Pyridinium Bromide (PyrHBr)
 - (iv) Sodium Cyanide (NaCN)
 - (A) i & iv (B) ii & iv (C) i & iii (D) iv only
- 4. If added to 2 L of 0.40 M HNO₃, which one of the following would form a buffer?
 - (A) 1.20 mol of KOH (B) 1.30 mol of sodium acetate (NaAc)
 - (C) 1.30 mol of NH₄Cl (D) 0.60 mol of potassium lactate (KLac)

For #5 - #8: Consider the weak base, Quinoline (Quin). Its base equilibrium constant is 6.0×10^{-10} .

- 5. What is the approximate pH of a 0.05 M solution of Quinoline?
 - (A) 11.0 (B) 5.3 (C) 8.7 (D) 9.4
- 6. What is the approximate percent protonation in a 0.05 M solution of Quinoline?
 - (A) $5.5 \times 10^{-6} \%$ (B) $1.1 \times 10^{-2} \%$ (C) $5.5 \times 10^{-4} \%$
 - (D) Cannot be determined without the hydroxide concentration, [OH-]
- 7. What is the approximate pH of a 0.01 M solution of Quinolinium Chloride, (QuinHCl) ?
 - (A) 3.4 (B) 5.6 (C) 8.4 (D) 6.3

Version A

- 8. What is the approximate pH of a solution containing 0.60 M Quinoline (Quin) and 0.20 M Quinolinium Chloride (QuinHCl)?
 - (A) 4.3 (B) 5.3 (C) 8.7 (D) 9.7

For #9 - #10: Consider the weak acid, hypochlorous acid, HCIO. Its acid dissociation constant is 3.0x10⁻⁸.

- 9. What is the approximate percent dissociation of a 0.005 M solution of HCIO?
 - (A) $2.4x10^{-3}\%$ (B) $3.5x10^{-1}\%$ (C) $2.4x10^{-1}\%$ (D) 3.5%
- 10. What is the approximate pH of a 0.10 M potassium hypochlorite, KCIO, solution?
 - (A) 3.7 (B) 4.3 (C) 9.7 (D) 10.3

For #11 - #15: Tellurous acid, H_2 TeO₃, is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$

- 11. What is the approximate pH of a solution containing 0.05 M Na₂TeO₃?
 - (A) 10.2 (B) 9.5 (C) 3.8
 - (D) None of the above
- 12. What is the approximate pH of a solution containing pure KHTeO₃?
 - (A) 7.7 (B) 5.1 (C) 2.5
 - (D) The pH depends upon the concentration of KHTeO₃
- 13. What is the approximate pH of a solution containing 0.50 M KHTeO₃ and 0.20 M Na₂TeO₃?
 - (A) 7.3 (B) 2.9 (C) 2.1 (D) 8.1
- 14. What is the approximate pH of a solution prepared by adding 0.40 mol of HNO₃ to 2.0 L of 0.30 M KHTeO₃?
 - (A) 2.0 (B) 2.8 (C) 2.2 (D) 3.4
- 15. Approximately what ratio of [TeO₃²⁻]/[HTeO₃⁻] will give a pH of 7.30 ?
 - (A) 0.20 (B) 2.5 (C) 1.5 (D) 0.40

Version A

For #16 - #18: Consider the amino acid, Histidine (His). The most positive form of Histidine is His^{2+} and the most negative form is His^{1-} . The three pKa's of Histidine are: $pK_{a'} = 1.8$, $pK_{a''} = 6.0$, and $pK_{a'''} = 9.2$.

(D) 1.8

- 16. What is the isoelectric point (pl) of Histidine?(A) 3.9(B) 6.0(C) 7.6
- 17. At what pH does one have 50% His^{1+} and 50% His^{0} ?
 - (A) 6.0 (B) 3.9 (C) 1.8 (D) 7.6
- 18. What is the average charge on the Histidine molecule at pH = 9.2?
 - (A) +1.5 (B) +1.0 (C) +0.5 (D) -0.5
- 19. If one mixes 99. mL of 0.10 M HCl to 100. mL of 0.10 M NaOH, the pH of the resultant solution is approximately:
 - (A) 9.0 (B) 10.7 (C) 5.0 (D) 3.3
- 20. 180 mL of 0.20 M H₃PO₄(aq) is needed to completely neutralize 200 mL of an aqueous NaOH(aq) solution? What is the approximate Molarity of the NaOH(aq) solution?
 - (A) 0.54 M (B) 0.06 M (C) 0.18 M
 - (D) None of the above

PART II. THREE (3) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

(10) 1. Pyridine $[C_5H_5N = Pyr]$ is a weak base with a base equilibrium constant, $K_b = 1.8x10^{-9}$. The pH of an aqueous solution containing Pyridinium Bromide $[C_5H_5NHBr = PyrHBr, M = 160.]$ is pH = 3.1. Calculate the mass percent of PyrHBr in the aqueous solution.

Note: Assume that the density of the aqueous solution is 1.0 g/mL.

Version A

- (20) 2. Phosphoric Acid (H₃PO₄) is a triprotic acid with acid dissociation constants, $K_a' = 7.5 \times 10^{-3}$, $K_a'' = 6.2 \times 10^{-8}$ and $K_a''' = 3.6 \times 10^{-13}$
 - (7) (a) Calculate the pH of a solution prepared by mixing 350 mL of 0.60 M HCl with 800 mL of 0.40 M K_3PO_4 .
 - (7) (b) Calculate the pH of a solution prepared by mixing 900 mL of 0.50 M KOH with 700 mL of 0.40 M H_3PO_4 .
 - (6) (c) Calculate the ratio, $[H_3PO_4]/[H_2PO_4]$ required to prepare a buffer solution with pH = 2.62.
- (10) 3. When 7.50 grams of a sample of impure Calcium Hydroxide [Ca(OH)₂, M = 74.1] is titrated with 0.35 M H₃PO₄, it takes 150. mL of H₃PO₄ to completely titrate the base. Calculate the **mass percent of impurity** in the Calcium Hydroxide sample.

CHEM 1423 - Exam 3 – March 31, 2016 - Version B

Name (60) PART I. MULTIPLE CHOICE (Circle the ONE correct answer) 1. Which of the following aqueous solutions is/are basic (pH > 7)? (i) Ammonium Chloride (NH₄Cl) (ii) Potassium Nitrate (KNO₃) (iii) Pyridinium Bromide (PyrHBr) (iv) Sodium Cyanide (NaCN) (A) iv only (B) ii & iv (C) i & iii (D) i & iv 2. If added to 2 L of 0.40 M HNO₃, which one of the following would form a buffer? (A) 1.20 mol of KOH (B) 0.60 mol of potassium lactate (KLac) (C) 1.30 mol of NH₄Cl (D) 1.30 mol of sodium acetate (NaAc) 3. The **pH** of a 0.05 M solution of a weak base, B, is 8.6. Therefore, the base equilibrium constant is approximately: (C) 7.5x10⁻⁶ (A) 1.3x10⁻¹⁶ (B) 3.2x10⁻¹⁰ (D) 1.6x10^{-!1} 4. The **pH** of a 0.10 M solution of Hypoiodous acid, HIO, is 5.80. What is the approximate Acid Dissociation Constant of HIO? (C) 2.5x10⁻¹¹ (A) 4.0x10⁻¹¹ (B) 1.6x10⁻⁵ (D) None of the above For #5 - #8: Consider the weak base, Quinoline (Quin). Its base equilibrium constant is 6.0x10⁻¹⁰.

- 5. What is the approximate pH of a 0.01 M solution of Quinolinium Chloride, (QuinHCl) ?
 - (A) 5.6 (B) 3.4 (C) 8.4 (D) 6.3
- 6. What is the approximate pH of a solution containing 0.60 M Quinoline (Quin) and 0.20 M Quinolinium Chloride (QuinHCl)?
 - (A) 4.3 (B) 9.7 (C) 8.7 (D) 5.3
- 7. What is the approximate pH of a 0.05 M solution of Quinoline?
 - (A) 8.7 (B) 5.3 (C) 11.0 (D) 9.4

Version B

8.	What is the approximate percent protonation in a 0.05 M solution of Quinoline?							
	(A) 5.5x10 ⁻⁶ %	(B) 5.5x10 ⁻⁴ %	6 (C) 1.1x1	0 ⁻² %				
	(D) Cannot be determined without the hydroxide concentration, [OH-]							
For #9 - #13: Tellurous acid, H ₂ TeO ₃ , is a diprotic acid with acid								
dissociation constants, $K_a' = 3.0x10^{-3}$ and $K_a'' = 2.0x10^{-8}$								
9.	What is the approximate pH of a solution containing pure KHTeO ₃ ?							
0.		•						
	(A) 5.1 (B) 7.7 (C) 2.5							
	(D) The pH depends upon the concentration of KHTeO ₃							
10.	What is the approximate pH of a solution containing 0.05 M Na ₂ TeO ₃ ?							
	(A) 9.5	(B) 10	.2	(C) 3.8				
	(D) None of the above							
11.	What is the approximate pH of a solution containing 0.50 M KHTeO ₃ and 0.20 M Na ₂ TeO ₃ ?							
	(A) 8.1	(B) 2.9	(C) 2.1	(D) 7.3				
12.	What is the approximate pH of a solution prepared by adding 0.40 mol of HNO ₃ to 2.0 L of 0.30 M KHTeO ₃ ?							
	(A) 2.0	(B) 2.8	(C) 2.2	(D) 3.4				
13.	Approximately what ratio of $[TeO_3^2-]/[HTeO_3-]$ will give a pH of 7.30 ?							
	(A) 0.20	(B) 2.5	(C) 1.5	(D) 0.40				
For #14 - #15: Consider the weak acid, hypochlorous acid, HCIO. Its acid dissociation constant is 3.0x10 ⁻⁸ .								

- 14. What is the approximate pH of a 0.10 M potassium hypochlorite, KCIO, solution?
 - (A) 10.3 (B) 4.3 (C) 9.7 (D) 3.7
- 15. What is the approximate percent dissociation of a 0.005 M solution of HCIO?
 - (A) 2.4x10⁻³ % (B) 2.4x10⁻¹ % (C) 3.5x10⁻¹ % (D) 3.5%

Version B

For #16 - #18: Consider the amino acid, Histidine (His). The most positive form of Histidine is His^{2+} and the most negative form is His^{1-} . The three pKa's of Histidine are: $pK_a' = 1.8$, $pK_a'' = 6.0$, and $pK_a''' = 9.2$.

16. At what pH does one have 50% His ¹⁺ and 50% His ⁰ ?								
	(A) 1.8	(B) 3.9	(C) 6.0	(D) 7.6				
17.	. What is the average charge on the Histidine molecule at pH = 9.2 ?							
	(A) +1.5	(B) +1.0	(C) +0.5	(D) -0.5				
18.	. What is the isoelectric point (pl) of Histidine?							
	(A) 7.6	(B) 6.0	(C) 3.9	(D) 1.8				
19.	180 mL of 0.20 M H ₃ PO ₄ (aq) is needed to completely neutralize 200 mL of an aqueous NaOH(aq) solution? What is the approximate Molarity of the NaOH(aq) solution?							
	(A) 0.18 M	(B) 0.06 M	(C)0.54 M				
	(D) None of the above							
20.	If one mixes 99. mL of 0.10 M HCl to 100. mL of 0.10 M NaOH, the pH of the resultant solution is approximately:							
	(A) 9.0	(B) 10.7	(C) 5.0	(D) 3.3				

PART II. THREE (3) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

(10) 1. Pyridine $[C_5H_5N = Pyr]$ is a weak base with a base equilibrium constant, $K_b = 1.8x10^{-9}$. The pH of an aqueous solution containing Pyridinium Bromide $[C_5H_5NHBr = PyrHBr, M = 160.]$ is pH = 2.8. Calculate the mass percent of PyrHBr in the aqueous solution.

Note: Assume that the density of the aqueous solution is 1.0 g/mL.

Version B

- (20) 2. Phosphoric Acid (H₃PO₄) is a triprotic acid with acid dissociation constants, $K_a' = 7.5 \times 10^{-3}$, $K_a'' = 6.2 \times 10^{-8}$ and $K_a''' = 3.6 \times 10^{-13}$
 - (7) (a) Calculate the pH of a solution prepared by mixing 350 mL of 0.60 M HCl with 850 mL of 0.40 M K_3PO_4 .
 - (7) (b) Calculate the pH of a solution prepared by mixing 900 mL of 0.50 M KOH with 650 mL of 0.40 M H_3PO_4 .
 - (6) (c) Calculate the ratio, $[H_3PO_4]/[H_2PO_4]$ required to prepare a buffer solution with pH = 2.66.
- (10) 3. When 7.80 grams of a sample of impure Calcium Hydroxide [Ca(OH)₂, M = 74.1] is titrated with 0.35 M H₃PO₄, it takes 150. mL of H₃PO₄ to completely titrate the base. Calculate the **mass percent of impurity** in the Calcium Hydroxide sample.