```
CHEM 1423- Exam 3- March 31, 2016 - Version A
```


Name

\qquad
(60) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. The $\mathbf{p H}$ of a 0.10 M solution of Hypoiodous acid, HIO , is 5.80 . What is the approximate Acid Dissociation Constant of HIO?
(A) 2.5×10^{-11}
(B) 1.6×10^{-5}
(C) 4.0×10^{-11}
(D) None of the above
2. The $\mathbf{p H}$ of a 0.05 M solution of a weak base, B , is 8.6 . Therefore, the base equilibrium constant is approximately:
(A) 1.3×10^{-16}
(B) 7.4×10^{-6}
(C) 3.2×10^{-10}
(D) 1.6×10^{-11}
3. Which of the following aqueous solutions is/are basic $(\mathrm{pH}>7)$?
(i) Ammonium Chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
(ii) Potassium Nitrate $\left(\mathrm{KNO}_{3}\right)$
(iii) Pyridinium Bromide (PyrHBr)
(iv) Sodium Cyanide (NaCN)
(A) i \& iv
(B) ii \& iv
(C) i \& iii
(D) iv only
4. If added to 2 L of $0.40 \mathrm{M} \mathrm{HNO}_{3}$, which one of the following would form a buffer?
(A) 1.20 mol of KOH
(B) 1.30 mol of sodium acetate (NaAc)
(C) 1.30 mol of $\mathrm{NH}_{4} \mathrm{Cl}$
(D) 0.60 mol of potassium lactate (KLac)

For \#5 - \#8: Consider the weak base, Quinoline (Quin). Its base equilibrium constant is 6.0×10^{-10}.
5. What is the approximate pH of a 0.05 M solution of Quinoline?
(A) 11.0
(B) 5.3
(C) 8.7
(D) 9.4
6. What is the approximate percent protonation in a 0.05 M solution of Quinoline?
(A) $5.5 \times 10^{-6} \%$
(B) $1.1 \times 10^{-2} \%$
(C) $5.5 \times 10^{-4} \%$
(D) Cannot be determined without the hydroxide concentration, $\left[\mathrm{OH}^{-}\right]$
7. What is the approximate pH of a 0.01 M solution of Quinolinium Chloride, (QuinHCl) ?
(A) 3.4
(B) 5.6
(C) 8.4
(D) 6.3

Version A

8. What is the approximate pH of a solution containing 0.60 M Quinoline (Quin) and 0.20 M Quinolinium Chloride (QuinHCl)?
(A) 4.3
(B) 5.3
(C) 8.7
(D) 9.7

For \#9 - \#10: Consider the weak acid, hypochlorous acid, HClO . Its acid dissociation constant is 3.0×10^{-8}.
9. What is the approximate percent dissociation of a 0.005 M solution of HClO ?
(A) $2.4 \times 10^{-3} \%$
(B) $3.5 \times 10^{-1} \%$
(C) $2.4 \times 10^{-1} \%$
(D) 3.5%
10. What is the approximate pH of a 0.10 M potassium hypochlorite, KClO , solution?
(A) 3.7
(B) 4.3
(C) 9.7
(D) 10.3

For \#11-\#15: Tellurous acid, $\mathrm{H}_{2} \mathrm{TeO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=3.0 \times 10^{-3}$ and $\mathrm{Ka}^{\prime \prime}=2.0 \times 10^{-8}$
11. What is the approximate pH of a solution containing $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{TeO}_{3}$?
(A) 10.2
(B) 9.5
(C) 3.8
(D) None of the above
12. What is the approximate pH of a solution containing pure KHTeO_{3} ?
(A) 7.7
(B) 5.1
(C) 2.5
(D) The pH depends upon the concentration of KHTeO_{3}
13. What is the approximate pH of a solution containing $0.50 \mathrm{M} \mathrm{KHTeO}_{3}$ and 0.20 M $\mathrm{Na}_{2} \mathrm{TeO}_{3}$?
(A) 7.3
(B) 2.9
(C) 2.1
(D) 8.1
14. What is the approximate pH of a solution prepared by adding 0.40 mol of HNO_{3} to 2.0 L of $0.30 \mathrm{M} \mathrm{KHTeO}_{3}$?
(A) 2.0
(B) 2.8
(C) 2.2
(D) 3.4
15. Approximately what ratio of $\left[\mathrm{TeO}_{3}{ }^{2-}\right] /\left[\mathrm{HTeO}_{3}{ }^{-}\right]$will give a pH of 7.30 ?
(A) 0.20
(B) 2.5
(C) 1.5
(D) 0.40

Version A

For \#16 - \#18: Consider the amino acid, Histidine (His). The most positive form of Histidine is His^{2+} and the most negative form is His^{1-}. The three pKa's of Histidine are: $\mathrm{pKa}^{\prime}=1.8, \mathrm{pKa}^{\prime \prime}=6.0$, and $\mathrm{pKa}^{\prime \prime}=9.2$.
16. What is the isoelectric point (pl) of Histidine?
(A) 3.9
(B) 6.0
(C) 7.6
(D) 1.8
17. At what pH does one have $50 \% \mathrm{His}^{1+}$ and $50 \% \mathrm{His}^{0}$?
(A) 6.0
(B) 3.9
(C) 1.8
(D) 7.6
18. What is the average charge on the Histidine molecule at $\mathrm{pH}=9.2$?
(A) +1.5
(B) +1.0
(C) +0.5
(D) -0.5
19. If one mixes $99 . \mathrm{mL}$ of 0.10 M HCl to $100 . \mathrm{mL}$ of 0.10 M NaOH , the pH of the resultant solution is approximately:
(A) 9.0
(B) 10.7
(C) 5.0
(D) 3.3
20. 180 mL of $0.20 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is needed to completely neutralize 200 mL of an aqueous $\mathrm{NaOH}(\mathrm{aq})$ solution? What is the approximate Molarity of the $\mathrm{NaOH}(\mathrm{aq})$ solution?
(A) 0.54 M
(B) 0.06 M
(C) 0.18 M
(D) None of the above

PART II. THREE (3) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

(10) 1. Pyridine $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=\mathrm{Pyr}\right]$ is a weak base with a base equilibrium constant, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-9}$. The pH of an aqueous solution containing Pyridinium Bromide [$\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHBr}=\mathrm{PyrHBr}, \mathrm{M}=160.\right]$ is $\mathrm{pH}=3.1$. Calculate the mass percent of PyrHBr in the aqueous solution.

Note: Assume that the density of the aqueous solution is $1.0 \mathrm{~g} / \mathrm{mL}$.

Version A

(20) 2. Phosphoric Acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a triprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=7.5 \times 10^{-3}, \mathrm{Ka}^{\prime \prime}=6.2 \times 10^{-8}$ and $\mathrm{Ka}^{\prime \prime \prime}=3.6 \times 10^{-13}$
(7) (a) Calculate the pH of a solution prepared by mixing 350 mL of 0.60 M HCl with 800 mL of $0.40 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$.
(7) (b) Calculate the pH of a solution prepared by mixing 900 mL of 0.50 M KOH with 700 mL of $0.40 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$.
(6) (c) Calculate the ratio, $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$required to prepare a buffer solution with $\mathrm{pH}=2.62$.
(10) 3. When 7.50 grams of a sample of impure Calcium Hydroxide $\left[\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{M}=74.1\right]$ is titrated with $0.35 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$, it takes 150 . $\mathrm{mL}^{\text {of } \mathrm{H}_{3} \mathrm{PO}_{4} \text { to completely titrate the base. }}$ Calculate the mass percent of impurity in the Calcium Hydroxide sample.

CHEM 1423 - Exam 3 - March 31, 2016 - Version B

Name

\qquad
(60) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. Which of the following aqueous solutions is/are basic $(\mathrm{pH}>7)$?
(i) Ammonium Chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
(ii) Potassium Nitrate $\left(\mathrm{KNO}_{3}\right)$
(iii) Pyridinium Bromide (PyrHBr)
(iv) Sodium Cyanide (NaCN)
(A) iv only
(B) ii \& iv
(C) i \& iii
(D) i \& iv
2. If added to 2 L of $0.40 \mathrm{M} \mathrm{HNO}_{3}$, which one of the following would form a buffer?
(A) 1.20 mol of KOH
(B) 0.60 mol of potassium lactate (KLac)
(C) 1.30 mol of $\mathrm{NH}_{4} \mathrm{Cl}$
(D) 1.30 mol of sodium acetate (NaAc)
3. The $\mathbf{p H}$ of a 0.05 M solution of a weak base, B , is 8.6 . Therefore, the base equilibrium constant is approximately:
(A) 1.3×10^{-16}
(B) 3.2×10^{-10}
(C) 7.5×10^{-6}
(D) $1.6 \times 10^{-!1}$
4. The $\mathbf{p H}$ of a 0.10 M solution of Hypoiodous acid, HIO , is 5.80 . What is the approximate Acid Dissociation Constant of HIO?
(A) 4.0×10^{-11}
(B) 1.6×10^{-5}
(C) 2.5×10^{-11}
(D) None of the above

For \#5 - \#8: Consider the weak base, Quinoline (Quin). Its base equilibrium constant is 6.0×10^{-10}.
5. What is the approximate pH of a 0.01 M solution of Quinolinium Chloride, (QuinHCl) ?
(A) 5.6
(B) 3.4
(C) 8.4
(D) 6.3
6. What is the approximate pH of a solution containing 0.60 M Quinoline (Quin) and 0.20 M Quinolinium Chloride (QuinHCl)?
(A) 4.3
(B) 9.7
(C) 8.7
(D) 5.3
7. What is the approximate pH of a 0.05 M solution of Quinoline?
(A) 8.7
(B) 5.3
(C) 11.0
(D) 9.4

Version B

8. What is the approximate percent protonation in a 0.05 M solution of Quinoline?
(A) $5.5 \times 10^{-6} \%$
(B) $5.5 \times 10^{-4} \%$
(C) $1.1 \times 10^{-2} \%$
(D) Cannot be determined without the hydroxide concentration, $\left[\mathrm{OH}^{-}\right]$

For \#9-\#13: Tellurous acid, $\mathrm{H}_{2} \mathrm{TeO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=3.0 \times 10^{-3}$ and $\mathrm{Ka}^{\prime \prime}=2.0 \times 10^{-8}$
9. What is the approximate pH of a solution containing pure KHTeO_{3} ?
(A) 5.1
(B) 7.7
(C) 2.5
(D) The pH depends upon the concentration of KHTeO_{3}
10. What is the approximate pH of a solution containing $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{TeO}_{3}$?
(A) 9.5
(B) 10.2
(C) 3.8
(D) None of the above
11. What is the approximate pH of a solution containing $0.50 \mathrm{M}_{\mathrm{KHTeO}}^{3}$ and 0.20 M $\mathrm{Na}_{2} \mathrm{TeO}_{3}$?
(A) 8.1
(B) 2.9
(C) 2.1
(D) 7.3
12. What is the approximate pH of a solution prepared by adding 0.40 mol of HNO_{3} to 2.0 L of $0.30 \mathrm{M} \mathrm{KHTeO}_{3}$?
(A) 2.0
(B) 2.8
(C) 2.2
(D) 3.4
13. Approximately what ratio of $\left[\mathrm{TeO}_{3}{ }^{2-}\right] /\left[\mathrm{HTeO}_{3}^{-}\right]$will give a pH of 7.30 ?
(A) 0.20
(B) 2.5
(C) 1.5
(D) 0.40

For \#14-\#15: Consider the weak acid, hypochlorous acid, HClO . Its acid dissociation constant is 3.0×10^{-8}.
14. What is the approximate pH of a 0.10 M potassium hypochlorite, KClO , solution?
(A) 10.3
(B) 4.3
(C) 9.7
(D) 3.7
15. What is the approximate percent dissociation of a 0.005 M solution of HClO ?
(A) $2.4 \times 10^{-3} \%$
(B) $2.4 \times 10^{-1} \%$
(C) $3.5 \times 10^{-1} \%$
(D) 3.5%

Version B

For \#16 - \#18: Consider the amino acid, Histidine (His). The most positive form of Histidine is His^{2+} and the most negative form is His^{1-}. The three pKa's of Histidine are: $\mathrm{pKa}^{\prime}=1.8, \mathrm{pKa}^{\prime \prime}=6.0$, and $\mathrm{pKa}^{\prime \prime}=9.2$.
16. At what pH does one have $50 \% \mathrm{His}^{1+}$ and $50 \% \mathrm{His}^{0}$?
(A) 1.8
(B) 3.9
(C) 6.0
(D) 7.6
17. What is the average charge on the Histidine molecule at $\mathrm{pH}=9.2$?
(A) +1.5
(B) +1.0
(C) +0.5
(D) -0.5
18. What is the isoelectric point (pl) of Histidine?
(A) 7.6
(B) 6.0
(C) 3.9
(D) 1.8
19. 180 mL of $0.20 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is needed to completely neutralize 200 mL of an aqueous $\mathrm{NaOH}(\mathrm{aq})$ solution? What is the approximate Molarity of the $\mathrm{NaOH}(\mathrm{aq})$ solution?
(A) 0.18 M
(B) 0.06 M
(C) 0.54 M
(D) None of the above
20. If one mixes $99 . \mathrm{mL}$ of 0.10 M HCl to $100 . \mathrm{mL}$ of 0.10 M NaOH , the pH of the resultant solution is approximately:
(A) 9.0
(B) 10.7
(C) 5.0
(D) 3.3

PART II. THREE (3) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

(10) 1. Pyridine $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=\mathrm{Pyr}\right]$ is a weak base with a base equilibrium constant, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-9}$. The pH of an aqueous solution containing Pyridinium Bromide [$\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHBr}=\mathrm{PyrHBr}, \mathrm{M}=160.\right]$ is $\mathrm{pH}=2.8$. Calculate the mass percent of PyrHBr in the aqueous solution.
Note: Assume that the density of the aqueous solution is $1.0 \mathrm{~g} / \mathrm{mL}$.

Version B

(20) 2. Phosphoric Acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a triprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=7.5 \times 10^{-3}, \mathrm{Ka}^{\prime \prime}=6.2 \times 10^{-8}$ and $\mathrm{Ka}^{\prime \prime}=3.6 \times 10^{-13}$
(7) (a) Calculate the pH of a solution prepared by mixing 350 mL of 0.60 M HCl with 850 mL of $0.40 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$.
(7) (b) Calculate the pH of a solution prepared by mixing 900 mL of 0.50 M KOH with 650 mL of $0.40 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$.
(6) (c) Calculate the ratio, $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$required to prepare a buffer solution with $\mathrm{pH}=2.66$.
(10) 3. When 7.80 grams of a sample of impure Calcium Hydroxide $\left[\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{M}=74.1\right]$ is titrated with $0.35 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$, it takes $150 . \mathrm{mL}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to completely titrate the base. Calculate the mass percent of impurity in the Calcium Hydroxide sample.

