CHEM 1423 - Exam 3 – March 30, 2017 - Version A

Name_____

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

- What is the approximate pH of a solution containing 0.07 grams of the strong base, potassium hydroxide, KOH (M = 56.1 g/mol), dissolved in 50 L of aqueous solution?
 - (A) 4.3 (B) 4.6 (C) 9.7 (D) 9.4

2. Which of the following aqueous solutions is/are acidic?

- (i) Ammonium Bromide (NH₄Br)
- (ii) Potassium Bromide (KBr)
- (iii) Anilinium Chloride (AnilHCl)
- (iv) Sodium Lactate (NaLac)
- (A) iv only (B) i & iii (C) i & ii & iv (D) i & ii & iii
- 3. What is the Base Equilibrium Constant of the weak base, Hydroxylamine, if a 0.05 M hydroxylamine solution has a pH = 9.4?
 - (A) 1.3x10⁻⁸ (B) 3.2x10⁻¹⁸ (C) 5.0x10⁻⁴ (D) 4.8x10⁻⁶

For #4 - #5: Consider the weak base, Morphine (Morp). Its base equilibrium constant is 1.6×10^{-6} .

4. What is the approximate percent protonation in a 0.07 M solution of Morphine?

(A) $3.3x10^{-2}$ % (B) $4.8x10^{-3}$ % (C) $3.3x10^{-4}$ % (D) 0.48%

- 5. What is the approximate pH of a 0.04 M solution of Morphinium Chloride, (MorpHCI) ?
 - (A) 4.8 (B) 3.6 (C) 5.3 (D) 9.2
- Benzoic Acid (HBenz) is a weak acid with an acid dissociation constant of 6.3x10⁻⁵. What is the approximate pH of a 0.20 M solution of Sodium Benzoate (NaBenz)?

(A) 2.4 (B) 5.2 (C) 8.8 (D) 11.6

- 7. Sulfurous Acid, H₂SO₃, is a diprotic acid with acid dissociation constants, $K_a' = 1.2 \times 10^{-2}$, and $K_a'' = 6.6 \times 10^{-8}$. What is the approximate pH of a 0.10 M solution of sodium sulfite, Na₂SO₃?
 - (A) 3.9 (B) 10.1 (C) 9.9 (D) 4.1

Version A

- Arsenous Acid, HAsO₂, has an acid dissociation constant, K_a = 8.0x10⁻¹⁰. What is the approximate percent dissociation of a 0.03 M solution of HAsO₂ ?
 - (A) $4.9 \times 10^{-4} \%$ (B) $1.6 \times 10^{-2} \%$ (C) 9.9 (D) $1.6 \times 10^{-4} \%$
- 9. If added to 2 L of 0.50 M NaOH, which one of the following would form a buffer?
 - (A) 2. L of 0.40 M Nitric Acid (HNO₃)
 - (B) 2. L of 0.40 M Potassium Acetate (KAc)
 - (C) 2. L of 0.60 M Lactic Acid (HLac)
 - (D) 2. L of 0.40 M Acetic Acid (HAc)
- 10. The base equilibrium constant for aniline (Anil) is 4.3x10⁻¹⁰. What is the approximate pH of a solution containing 0.30 M Aniline and 0.50 M Anilinium Bromide (AnilHBr)?
 - (A) 9.60 (B) 4.85 (C) 4.41 (D) 9.15
- 11. The acid dissociation constant of Propanoic Acid (HProp) is 1.5x10⁻⁵. What is the approximate pH after 0.40 mol of NaOH is added to a solution initially containing 2.0 L of 0.50 M HProp ?
 - (A) 4.65 (B) 5.00 (C) 4.42 (D) 5.22

For #12 - #14: Consider the amino acid, Glutamic Acid (Glu). The most positive form of Glutamic Acid is Glu^{1+} and the most negative form is Glu^{2-} . The three pKa's of Glutamic Acid are: $pK_a' = 2.1$, $pK_a'' = 4.1$, and $pK_a''' = 9.5$.

- 12. What is the isoelectric point (pl) of Glutamic Acid?
 - (A) 3.1 (B) 6.8 (C) 2.1 (D) 4.1
- 13. At what pH does one have 50% Glu⁰ (neutral) and 50% Glu¹⁻?
 - (A) 3.1 (B) 9.5 (C) 6.8 (D) 4.1
- 14. What is the average charge on the Glutamic Acid molecule at pH = 6.8 ?
 - (A) -1.5 (B) -0.5 (C) -1.0 (D) -2.0

Version A

- 15. 240 mL of 0.40 M NaOH(aq) is needed to completely neutralize 120 mL of an aqueous H₃PO₄(aq) solution? What is the Molarity of the H₃PO₄(aq) solution?
 - (A) 0.27 M (B) 0.47 M (C) 0.80 M (D) 0.21 M

For #16 - #19: Arsenous acid, H_3AsO_3 , is a triprotic acid with acid dissociation constants, $K_a' = 5.6 \times 10^{-3}$, $K_a'' = 1.7 \times 10^{-7}$, and $K_a''' = 2.5 \times 10^{-12}$

16. Which one of the solutions below would be best to prepare a buffer with pH = 7.2?

$(A) K_2 HAsO_3/Na_3 AsO_3 \qquad (B$) Na ₂ HAsO ₃
---------------------------------------	-------------------------------------

- (C) KH₂AsO₃/Na₂HAsO₃ (D) KH₂AsO₃/Na₃AsO₃
- 17. What is the approximate pH of a solution containing pure K₂HAsO₃?
 - (A) 6.8 (B) 9.2 (C) 11.6
 - (D) The pH depends upon the K₂HAsO₃ concentration.
- What is the approximate pH of a solution prepared by adding 0.30 mol of NaOH to 2.0 L of 0.40 M KH₂AsO₃?
 - (A) 7.20 (B) 7.00 (C) 6.34 (D) 6.55
- 19. Approximately what ratio of $[H_3AsO_3]/[H_2AsO_3^-]$ will give a solution with pH = 2.9?
 - (A) 0.2 (B) 0.6 (C) 5.6 (D) 4.5

PART II. TWO (2) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

Versions A and B

- (16) 1. Tellurous acid, H₂TeO₃, is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$
 - (6) (a) Calculate the pH of a solution prepared by mixing 2.0 L of 0.60 M K₂TeO₃ with 1.0 L of 0.70 M HCI.
 - (6) (b) Calculate the pH of a solution prepared by mixing 2.0 L of 0.60 M H₂TeO₃ with 2.0 L of 0.80 M NaOH.
 - (4) (c) Calculate the ratio, $[HTeO_3^-]/[H_2TeO_3]$, needed to prepare a buffer solution with pH = 3.20
- (08) 2. Hypobromous Acid, HBrO, has an Acid Dissociation Constant, $K_a = 2.0 \times 10^{-9}$. Calculate the pH of a solution of Sodium Hypobromite, NaBrO (M = 118.9 g/mol) that is 3.0% NaBrO by weight.

Note: Assume that the density of the solution is 1.0 g/mL

CHEM 1423 - Exam 3 – March 30, 2017 - Version B

Name_____

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

- 1. Which of the following aqueous solutions is/are acidic?
 - (i) Ammonium Bromide (NH₄Br)
 - (ii) Potassium Bromide (KBr)
 - (iii) Anilinium Chloride (AnilHCl)
 - (iv) Sodium Lactate (NaLac)
 - (A) iv only (B) i & ii & iii (C) i & ii & iv (D) i & iii

For #2 - #3: Consider the weak base, Morphine (Morp). Its base equilibrium constant is 1.6×10^{-6} .

2. What is the approximate percent protonation in a 0.07 M solution of Morphine?

(A) $3.3x10^{-2}$ % (B) 0.48% (C) $3.3x10^{-4}$ % (D) $4.8x10^{-3}$ %

- 3. What is the approximate pH of a 0.04 M solution of Morphinium Chloride, (MorpHCI) ?
 - (A) 3.6 (B) 4.8 (C) 5.3 (D) 9.2
- 4. What is the approximate pH of a solution containing 0.07 grams of the strong base, potassium hydroxide, KOH (M = 56.1 g/mol), dissolved in 50 L of aqueous solution?
 - (A) 9.4 (B) 4.6 (C) 9.7 (D) 4.3
- 5. What is the Base Equilibrium Constant of the weak base, Hydroxylamine, if a 0.05 M hydroxylamine solution has a pH = 9.4?
 - (A) 5.0x10⁻⁴ (B) 3.2x10⁻¹⁸ (C) 1.3x10⁻⁸ (D) 4.8x10⁻⁶
- 6. Sulfurous Acid, H₂SO₃, is a diprotic acid with acid dissociation constants, K_a = 1.2x10⁻², and K_a = 6.6x10⁻⁸. What is the approximate pH of a 0.10 M solution of sodium sulfite, Na₂SO₃ ?
 - (A) 3.9 (B) 10.1 (C) 9.9 (D) 4.1
- Benzoic Acid (HBenz) is a weak acid with an acid dissociation constant of 6.3x10⁻⁵. What is the approximate pH of a 0.20 M solution of Sodium Benzoate (NaBenz)?
 - (A) 2.4 (B) 5.2 (C) 11.6 (D) 8.8

Version **B**

For #8 - #10: Consider the amino acid, Glutamic Acid (Glu). The most positive form of Glutamic Acid is Glu^{1+} and the most negative form is Glu^{2-} . The three pKa's of Glutamic Acid are: $pK_a' = 2.1$, $pK_a'' = 4.1$, and $pK_a''' = 9.5$.

- 8. At what pH does one have 50% Glu⁰ (neutral) and 50% Glu¹⁻?
 - (A) 3.1 (B) 9.5 (C) 4.1 (D) 6.8
- 9. What is the isoelectric point (pl) of Glutamic Acid?
 - (A) 4.1 (B) 3.1 (C) 6.8 (D) 4.1
- 10. What is the average charge on the Glutamic Acid molecule at pH = 6.8 ?
 - (A) -1.0 (B) -0.5 (C) -1.5 (D) -2.0
- 11. If added to 2 L of 0.50 M NaOH, which one of the following would form a buffer?
 - (A) 2. L of 0.40 M Nitric Acid (HNO₃)
 - (B) 2. L of 0.40 M Potassium Acetate (KAc)
 - (C) 2. L of 0.40 M Acetic Acid (HAc)
 - (D) 2. L of 0.60 M Lactic Acid (HLac)
- 12. Arsenous Acid, HAsO₂, has an acid dissociation constant, K_a = 8.0x10⁻¹⁰. What is the approximate percent dissociation of a 0.03 M solution of HAsO₂ ?
 - (A) $1.6 \times 10^{-2} \%$ (B) $4.9 \times 10^{-4} \%$ (C) 9.9 (D) $1.6 \times 10^{-4} \%$
- 13. The acid dissociation constant of Propanoic Acid (HProp) is 1.5x10⁻⁵. What is the approximate pH after 0.40 mol of NaOH is added to a solution initially containing 2.0 L of 0.50 M HProp ?
 - (A) 4.42 (B) 5.00 (C) 4.65 (D) 5.22
- 14. The base equilibrium constant for aniline (Anil) is 4.3x10⁻¹⁰. What is the approximate pH of a solution containing 0.30 M Aniline and 0.50 M Anilinium Bromide (AnilHBr)?
 - (A) 9.60 (B) 4.41 (C) 4.85 (D) 9.15

Version B

For #15 - #18: Arsenous acid, H₃AsO₃, is a triprotic acid with acid dissociation constants, $K_a' = 5.6 \times 10^{-3}$, $K_a'' = 1.7 \times 10^{-7}$, and $K_a''' = 2.5 \times 10^{-12}$

- 15. What is the approximate pH of a solution containing pure K₂HAsO₃?
 - (A) 9.2 (B) 11.6 (C) 6.8
 - (D) The pH depends upon the K₂HAsO₃ concentration.
- 16. Which one of the solutions below would be best to prepare a buffer with pH = 7.2?
 - (A) K_2HAsO_3/Na_3AsO_3 (B) Na_2HAsO_3
 - (C) KH_2AsO_3/Na_3AsO_3 (D) KH_2AsO_3/Na_2HAsO_3
- 17. What is the approximate pH of a solution prepared by adding 0.30 mol of NaOH to 2.0 L of 0.40 M KH₂AsO₃?
 - (A) 6.55 (B) 7.00 (C) 6.34 (D) 7.20
- 18. Approximately what ratio of $[H_3AsO_3]/[H_2AsO_3]$ will give a solution with pH = 2.9?
 - (A) 2.5 (B) 0.6 (C) 5.6 (D) 0.2
- 19. 240 mL of 0.40 M NaOH(aq) is needed to completely neutralize 120 mL of an aqueous H₃PO₄(aq) solution? What is the Molarity of the H₃PO₄(aq) solution?
 - (A) 0.47 M (B) 0.80 M (C) 0.27 M (D) 0.21 M

PART II. TWO (2) PROBLEMS BELOW: REMEMBER TO SHOW WORK FOR CREDIT

Versions A and B

- (16) 1. Tellurous acid, H₂TeO₃, is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$
 - (6) (a) Calculate the pH of a solution prepared by mixing 2.0 L of 0.60 M K_2 TeO₃ with 1.0 L of 0.70 M HCl.
 - (6) (b) Calculate the pH of a solution prepared by mixing 2.0 L of 0.60 M H₂TeO₃ with 2.0 L of 0.80 M NaOH.
 - (4) (c) Calculate the ratio, $[HTeO_3^-]/[H_2TeO_3]$, needed to prepare a buffer solution with pH = 3.20
- (08) 2. Hypobromous Acid, HBrO, has an Acid Dissociation Constant, K_a = 2.0x10⁻⁹. Calculate the pH of a solution of Sodium Hypobromite, NaBrO (M = 118.9 g/mol) that is 3.0% NaBrO by weight.

Note: Assume that the density of the solution is 1.0 g/mL