CHEM 1423 - Exam 3 - March 30, 2017 - Version A

Name \qquad
(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. What is the approximate pH of a solution containing 0.07 grams of the strong base, potassium hydroxide, $\mathrm{KOH}(\mathrm{M}=56.1 \mathrm{~g} / \mathrm{mol})$, dissolved in 50 L of aqueous solution?
(A) 4.3
(B) 4.6
(C) 9.7
(D) 9.4
2. Which of the following aqueous solutions is/are acidic?
(i) Ammonium Bromide $\left(\mathrm{NH}_{4} \mathrm{Br}\right)$
(ii) Potassium Bromide (KBr)
(iii) Anilinium Chloride (AnilHCl)
(iv) Sodium Lactate (NaLac)
(A) iv only
(B) i \& iii
(C) i \& ii \& iv
(D) i \& ii \& iii
3. What is the Base Equilibrium Constant of the weak base, Hydroxylamine, if a 0.05 M hydroxylamine solution has a $\mathrm{pH}=9.4$?
(A) 1.3×10^{-8}
(B) 3.2×10^{-18}
(C) 5.0×10^{-4}
(D) 4.8×10^{-6}

For \#4 - \#5: Consider the weak base, Morphine (Morp). Its base equilibrium constant is 1.6×10^{-6}.
4. What is the approximate percent protonation in a 0.07 M solution of Morphine?
(A) $3.3 \times 10^{-2} \%$
(B) $4.8 \times 10^{-3} \%$
(C) $3.3 \times 10^{-4} \%$
(D) 0.48%
5. What is the approximate pH of a 0.04 M solution of Morphinium Chloride, (MorpHCl)?
(A) 4.8
(B) 3.6
(C) 5.3
(D) 9.2
6. Benzoic Acid (HBenz) is a weak acid with an acid dissociation constant of 6.3×10^{-5}. What is the approximate pH of a 0.20 M solution of Sodium Benzoate (NaBenz)?
(A) 2.4
(B) 5.2
(C) 8.8
(D) 11.6
7. Sulfurous Acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=1.2 \times 10^{-2}$, and $\mathrm{Ka}^{\prime \prime}=6.6 \times 10^{-8}$. What is the approximate pH of a 0.10 M solution of sodium sulfite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$?
(A) 3.9
(B) 10.1
(C) 9.9
(D) 4.1

Version A

8. Arsenous Acid, HAsO_{2}, has an acid dissociation constant, $\mathrm{Ka}=8.0 \times 10^{-10}$. What is the approximate percent dissociation of a 0.03 M solution of HAsO_{2} ?
(A) $4.9 \times 10^{-4} \%$
(B) $1.6 \times 10^{-2} \%$
(C) 9.9
(D) $1.6 \times 10^{-4} \%$
9. If added to 2 L of 0.50 M NaOH , which one of the following would form a buffer?
(A) 2. L of 0.40 M Nitric Acid $\left(\mathrm{HNO}_{3}\right)$
(B) 2. L of 0.40 M Potassium Acetate (KAc)
(C) 2. L of 0.60 M Lactic Acid (HLac)
(D) 2. L of 0.40 M Acetic Acid (HAc)
10. The base equilibrium constant for aniline (Anil) is 4.3×10^{-10}. What is the approximate pH of a solution containing 0.30 M Aniline and 0.50 M Anilinium Bromide (AnilHBr)?
(A) 9.60
(B) 4.85
(C) 4.41
(D) 9.15
11. The acid dissociation constant of Propanoic Acid (HProp) is 1.5×10^{-5}. What is the approximate pH after 0.40 mol of NaOH is added to a solution initially containing 2.0 L of 0.50 M HProp ?
(A) 4.65
(B) 5.00
(C) 4.42
(D) 5.22

For \#12 - \#14: Consider the amino acid, Glutamic Acid (Glu). The most positive form of Glutamic Acid is Glu ${ }^{1+}$ and the most negative form is Glu ${ }^{2-}$. The three pKa's of Glutamic Acid are: $\mathrm{pKa}^{\prime}=2.1, \mathrm{pKa}^{\prime \prime}=4.1$, and $\mathrm{pKa}^{\prime \prime}{ }^{\prime \prime}=9.5$.
12. What is the isoelectric point (pl) of Glutamic Acid?
(A) 3.1
(B) 6.8
(C) 2.1
(D) 4.1
13. At what pH does one have $50 \% \mathrm{Glu}^{0}$ (neutral) and $50 \% \mathrm{Glu}^{1-}$?
(A) 3.1
(B) 9.5
(C) 6.8
(D) 4.1
14. What is the average charge on the Glutamic Acid molecule at $\mathrm{pH}=6.8$?
(A) -1.5
(B) -0.5
(C) -1.0
(D) -2.0

Version A

15. 240 mL of $0.40 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is needed to completely neutralize 120 mL of an aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ solution? What is the Molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ solution?
(A) 0.27 M
(B) 0.47 M
(C) 0.80 M
(D) 0.21 M

For \#16-\#19: Arsenous acid, $\mathrm{H}_{3} \mathrm{AsO}_{3}$, is a triprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=5.6 \times 10^{-3}, \mathrm{Ka}^{\prime \prime}=1.7 \times 10^{-7}$, and $\mathrm{Ka}^{\prime \prime}{ }^{\prime \prime}=2.5 \times 10^{-12}$
16. Which one of the solutions below would be best to prepare a buffer with $\mathrm{pH}=7.2$?
(A) $\mathrm{K}_{2} \mathrm{HAsO}_{3} / \mathrm{Na}_{3} \mathrm{AsO}_{3}$
(B) $\mathrm{Na}_{2} \mathrm{HAsO}_{3}$
(C) $\mathrm{KH}_{2} \mathrm{AsO}_{3} / \mathrm{Na}_{2} \mathrm{HAsO}_{3}$
(D) $\mathrm{KH}_{2} \mathrm{AsO}_{3} / \mathrm{Na}_{3} \mathrm{AsO}_{3}$
17. What is the approximate pH of a solution containing pure $\mathrm{K}_{2} \mathrm{HAsO}_{3}$?
(A) 6.8
(B) 9.2
(C) 11.6
(D) The pH depends upon the $\mathrm{K}_{2} \mathrm{HAsO}_{3}$ concentration.
18. What is the approximate pH of a solution prepared by adding 0.30 mol of NaOH to 2.0 L of $0.40 \mathrm{M} \mathrm{KH}_{2} \mathrm{AsO}_{3}$?
(A) 7.20
(B) 7.00
(C) 6.34
(D) 6.55
19. Approximately what ratio of $\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right] /\left[\mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{-}\right]$will give a solution with $\mathrm{pH}=2.9$?
(A) 0.2
(B) 0.6
(C) 5.6
(D) 4.5

Versions A and B

(16) 1. Tellurous acid, $\mathrm{H}_{2} \mathrm{TeO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=3.0 \times 10^{-3}$ and $\mathrm{Ka}^{\prime \prime}=2.0 \times 10^{-8}$
(6) (a) Calculate the pH of a solution prepared by mixing 2.0 L of $0.60 \mathrm{M} \mathrm{K}_{2} \mathrm{TeO}_{3}$ with 1.0 L of 0.70 M HCl .
(6) (b) Calculate the pH of a solution prepared by mixing 2.0 L of $0.60 \mathrm{M} \mathrm{H}_{2} \mathrm{TeO}_{3}$ with 2.0 L of 0.80 M NaOH .
(4) (c) Calculate the ratio, $\left[\mathrm{HTeO}_{3}\right] /\left[\mathrm{H}_{2} \mathrm{TeO}_{3}\right]$, needed to prepare a buffer solution with $\mathrm{pH}=3.20$
(08) 2. Hypobromous Acid, HBrO, has an Acid Dissociation Constant, $\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-9}$. Calculate the pH of a solution of Sodium Hypobromite, $\mathrm{NaBrO}(\mathrm{M}=118.9 \mathrm{~g} / \mathrm{mol})$ that is $3.0 \% \mathrm{NaBrO}$ by weight.

Note: Assume that the density of the solution is $1.0 \mathrm{~g} / \mathrm{mL}$

CHEM 1423 - Exam 3 - March 30, 2017 - Version B

Name \qquad

PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. Which of the following aqueous solutions is/are acidic?
(i) Ammonium Bromide $\left(\mathrm{NH}_{4} \mathrm{Br}\right)$
(ii) Potassium Bromide (KBr)
(iii) Anilinium Chloride (AnilHCl)
(iv) Sodium Lactate (NaLac)
(A) iv only
(B) i \& ii \& iii
(C) i \& ii \& iv
(D) i \& iii

For \#2 - \#3: Consider the weak base, Morphine (Morp). Its base equilibrium constant is 1.6×10^{-6}.
2. What is the approximate percent protonation in a 0.07 M solution of Morphine?
(A) $3.3 \times 10^{-2} \%$
(B) 0.48%
(C) $3.3 \times 10^{-4} \%$
(D) $4.8 \times 10^{-3} \%$
3. What is the approximate pH of a 0.04 M solution of Morphinium Chloride, (MorpHCl) ?
(A) 3.6
(B) 4.8
(C) 5.3
(D) 9.2
4. What is the approximate pH of a solution containing 0.07 grams of the strong base, potassium hydroxide, $\mathrm{KOH}(\mathrm{M}=56.1 \mathrm{~g} / \mathrm{mol})$, dissolved in 50 L of aqueous solution?
(A) 9.4
(B) 4.6
(C) 9.7
(D) 4.3
5. What is the Base Equilibrium Constant of the weak base, Hydroxylamine, if a 0.05 M hydroxylamine solution has a $\mathrm{pH}=9.4$?
(A) 5.0×10^{-4}
(B) 3.2×10^{-18}
(C) 1.3×10^{-8}
(D) 4.8×10^{-6}
6. Sulfurous Acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=1.2 \times 10^{-2}$, and $\mathrm{Ka}^{\prime \prime}=6.6 \times 10^{-8}$. What is the approximate pH of a 0.10 M solution of sodium sulfite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$?
(A) 3.9
(B) 10.1
(C) 9.9
(D) 4.1
7. Benzoic Acid (HBenz) is a weak acid with an acid dissociation constant of 6.3×10^{-5}. What is the approximate pH of a 0.20 M solution of Sodium Benzoate (NaBenz)?
(A) 2.4
(B) 5.2
(C) 11.6
(D) 8.8

Version B

For \#8 - \#10: Consider the amino acid, Glutamic Acid (Glu). The most positive form of Glutamic Acid is Glu ${ }^{1+}$ and the most negative form is Glu^{2-}. The three pKa's of Glutamic Acid are: $\mathrm{pK}_{\mathrm{a}}{ }^{\prime}=2.1, \mathrm{pK}_{\mathrm{a}}{ }^{\prime \prime}=4.1$, and $\mathrm{pKa}^{\prime \prime}{ }^{\prime \prime}=9.5$.
8. At what pH does one have $50 \% \mathrm{Glu}^{0}$ (neutral) and $50 \% \mathrm{Glu}^{1-}$?
(A) 3.1
(B) 9.5
(C) 4.1
(D) 6.8
9. What is the isoelectric point (pl) of Glutamic Acid?
(A) 4.1
(B) 3.1
(C) 6.8
(D) 4.1
10. What is the average charge on the Glutamic Acid molecule at $\mathrm{pH}=6.8$?
(A) -1.0
(B) -0.5
(C) -1.5
(D) -2.0
11. If added to 2 L of 0.50 M NaOH , which one of the following would form a buffer?
(A) 2. L of 0.40 M Nitric Acid $\left(\mathrm{HNO}_{3}\right)$
(B) 2. L of 0.40 M Potassium Acetate (KAc)
(C) 2. L of 0.40 M Acetic Acid (HAc)
(D) 2. L of 0.60 M Lactic Acid (HLac)
12. Arsenous Acid, HAsO_{2}, has an acid dissociation constant, $\mathrm{Ka}=8.0 \times 10^{-10}$. What is the approximate percent dissociation of a 0.03 M solution of HAsO_{2} ?
(A) $1.6 \times 10^{-2} \%$
(B) $4.9 \times 10^{-4} \%$
(C) 9.9
(D) $1.6 \times 10^{-4} \%$
13. The acid dissociation constant of Propanoic Acid (HProp) is 1.5×10^{-5}. What is the approximate pH after 0.40 mol of NaOH is added to a solution initially containing 2.0 L of 0.50 M HProp ?
(A) 4.42
(B) 5.00
(C) 4.65
(D) 5.22
14. The base equilibrium constant for aniline (Anil) is 4.3×10^{-10}. What is the approximate pH of a solution containing 0.30 M Aniline and 0.50 M Anilinium Bromide (AnilHBr)?
(A) 9.60
(B) 4.41
(C) 4.85
(D) 9.15

Version B

For \#15-\#18: Arsenous acid, $\mathrm{H}_{3} \mathrm{AsO}_{3}$, is a triprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=5.6 \times 10^{-3}, \mathrm{Ka}^{\prime \prime}=1.7 \times 10^{-7}$, and $\mathrm{Ka}^{\prime \prime}{ }^{\prime \prime}=2.5 \times 10^{-12}$
15. What is the approximate pH of a solution containing pure $\mathrm{K}_{2} \mathrm{HAsO}_{3}$?
(A) 9.2
(B) 11.6
(C) 6.8
(D) The pH depends upon the $\mathrm{K}_{2} \mathrm{HAsO}_{3}$ concentration.
16. Which one of the solutions below would be best to prepare a buffer with $\mathrm{pH}=7.2$?
(A) $\mathrm{K}_{2} \mathrm{HAsO}_{3} / \mathrm{Na}_{3} \mathrm{AsO}_{3}$
(B) $\mathrm{Na}_{2} \mathrm{HAsO}_{3}$
(C) $\mathrm{KH}_{2} \mathrm{AsO}_{3} / \mathrm{Na}_{3} \mathrm{AsO}_{3}$
(D) $\mathrm{KH}_{2} \mathrm{AsO}_{3} / \mathrm{Na}_{2} \mathrm{HAsO}_{3}$
17. What is the approximate pH of a solution prepared by adding 0.30 mol of NaOH to 2.0 L of $0.40 \mathrm{M} \mathrm{KH}_{2} \mathrm{AsO}_{3}$?
(A) 6.55
(B) 7.00
(C) 6.34
(D) 7.20
18. Approximately what ratio of $\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right] /\left[\mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{-}\right]$will give a solution with $\mathrm{pH}=2.9$?
(A) 2.5
(B) 0.6
(C) 5.6
(D) 0.2
19. 240 mL of $0.40 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is needed to completely neutralize 120 mL of an aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ solution? What is the Molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ solution?
(A) 0.47 M
(B) 0.80 M
(C) 0.27 M
(D) 0.21 M

Versions A and B

(16) 1. Tellurous acid, $\mathrm{H}_{2} \mathrm{TeO}_{3}$, is a diprotic acid with acid dissociation constants, $\mathrm{Ka}^{\prime}=3.0 \times 10^{-3}$ and $\mathrm{Ka}_{\mathrm{a}}{ }^{\prime \prime}=2.0 \times 10^{-8}$
(6) (a) Calculate the pH of a solution prepared by mixing 2.0 L of $0.60 \mathrm{M} \mathrm{K}_{2} \mathrm{TeO}_{3}$ with 1.0 L of 0.70 M HCl .
(6) (b) Calculate the pH of a solution prepared by mixing 2.0 L of $0.60 \mathrm{M} \mathrm{H}_{2} \mathrm{TeO}_{3}$ with 2.0 L of 0.80 M NaOH .
(4) (c) Calculate the ratio, $\left[\mathrm{HTeO}_{3}\right] /\left[\left[\mathrm{H}_{2} \mathrm{TeO}_{3}\right]\right.$, needed to prepare a buffer solution with $\mathrm{pH}=3.20$
(08) 2. Hypobromous Acid, HBrO, has an Acid Dissociation Constant, $\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-9}$. Calculate the pH of a solution of Sodium Hypobromite, NaBrO ($\mathrm{M}=118.9 \mathrm{~g} / \mathrm{mol}$) that is $3.0 \% \mathrm{NaBrO}$ by weight.

Note: Assume that the density of the solution is $1.0 \mathrm{~g} / \mathrm{mL}$

