Vacu A

CHEM 1423 - Exam 4 - April 21, 2016

Name_____ Solution [

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{x} 10^{-3} \text{ kJ/mol-K}$

(63) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

For #1 - #2: Consider the sparingly soluble compound, Lanthanium lodate, [La(IO₃)₃]. The solubility product constant is K_{sp} = 7.5x10⁻¹².

1. What is the solubility of La(IO₃)₃ in pure water?

- (A) 1.7×10^{-3} M (B) 7.3×10^{-4} (C) 6.5×10^{-5} M (D) 1.2×10^{-4} M
- 2. What is the **concentration of iodate ions**, [IO₃-], in a solution containing 2.0 M La(NO₃)₃ (which is a strong electrolyte)?
 - (A) 4.7×10^{-4} M (B) 5.2×10^{-5} M (C) 1.6×10^{-4} M (D) 6.5×10^{-7} M
- 3. The solubility products of two sparingly soluble Lead(II) [Pb²⁺] salts are: Pb(ClO₃)₂ K_{sp} = $5.6x10^{-13}$, PbSO₄ K_{sp} = $1.6x10^{-8}$.

Consider a solution which initially contains 1.0×10^{-5} M ClO₃-(aq) and 1.0×10^{-5} M SO₄²-(aq). Pb(NO₃)₂ (a strong electrolyte) is added until [Pb²⁺] = 7.0×10^{-3} M.

Which of the above salts will form any solid precipitate?

- (A) Pb(ClO₃)₂ only (B) PbSO₄ only (C) Neither Pb(ClO₃)₂ nor PbSO₄ (D) Both Pb(ClO₃)₂ and PbSO₄
- 4. Which of the following statements is/are NOT correct?
- (1) The entropy change on crystallizing liquid is positive
 (2) The entropy usually increases when a liquid is dissolved in a second liquid
- (3) The entropy of CaO(s) is higher than the entropy of CaCO₃(s) (4) The entropy increases when a gas dissolves in a liquid
 - (A) 1 & 4 (B) 1 & 3 & 4 (C) 1 & 3 (D) 2 only
- 5. Consider the reaction: $N_2(g)+2$ $O_2(g)\to 2$ $NO_2(g)$, $\Delta H^o>0$. This reaction is:
 - (A) Reactant Favored at all temperatures
 - (B) Product Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature

Vasin A

6.	For the hypothetical reaction, $A \rightleftharpoons B$, $\Delta S^{\circ} = -70$ J/K (independent of temperature) The equilibrium constant for the reaction at 150 °C is 2.0x10 ⁻³ . What is the enthalpy change, ΔH° for this reaction?										
	(A) +5	1.5 kJ	(B) -37	.3 kJ	(C)	-7.8 kJ	(D)	-51.5 kJ			
7.	For the	reaction, Ca	$H_3OH(g)$	$\rightleftarrows CO(g$	$(g) + 2H_2$	(g), ΔH°	= +91 k	J and			
		-221 J/K. W							r, for the		
	related	reaction, $\frac{1}{2}$	CH_3OH	$(g) \longleftrightarrow \int_{a}^{1}$	1/2 <i>CO</i> (g	$)+1H_2(g)$, at 25	°C?			
	(A) +1	11 J/K	(B) +	153 J/K	(C)) -111 J/k	((D) -153	J/K		
8.	Vaporiz	rmal boiling ation of met when 40 g	hane is	8.5 kJ/mol	. What	is the enti	ropy ch	ange of the	•		
	(A) -19	11 J/K	(1	B) +191 J	/K		(C) -13	31 J/K			
	(D) Re	quires the v	alue of th	ne Ertropy	of Vapo	orization					
For#	For #9 - #10: Consider the reaction: $2 \text{ Fe}_2\text{O}_3(s) \rightarrow 4 \text{ Fe}(s) + 3 \text{ O}_2(g)$										
		Fe ₂ O ₃ (s)			s)	O ₂ (g)	(3	,			
Sm ^o (2	25 °C)	87 J/mol-K		•	•	205 J/mol	-K				
		-742 kJ/mo									
•	•	s ∆Gº for the		eaction [at	25 °C1	?					
	(A) -14			B) +742 k	_	(C)	+1484	k.J			
	` '	ufficient Info	`	,	-						
10	\^/hat is	tha Enthalr	w Chan	ro ∧∐0 fo	r tha ab	ovo roasti	on lat S	05 0C1			
10.		the Enthalp									
· ·	(A) + 10		•	3) -1320 k	J	(C)	+1320	KJ			
		ufficient Info			ال						
11.		action, $A \rightarrow 0$							⊦40 J/K.		
	(A) ΔH	< -11.9 kJ		(B) ΔH >	+11.9 k	Ď	(C) Δ	H > 18.4 k	J		
	(D) No	conclusion	can be r	nade abou	it ΔH	-					
12	. For the	exergonic	reaction	, $C \rightarrow D$, Δ	H = +25	kJ. For	this rea	ction,			
	(A) ∆G	5<0 & ∆S<0	(B) ∆G	>0 & ∆S<0) (C) Δ	.G>0 & ΔS	S>0 €) ΔG<0 & Δ	<u>0<8</u> 2		

Version A

For #13 - #14: The Enthalpy of Vaporization of $Br_2(liq)$ is 29.5 kJ/mol. The Entropy of Vaporization of $Br_2(liq)$ is 89.0 J/mol-K.

	Entropy change of the enses to Br₂(liq) at 90			nole of Br ₂ (gas)	
(A) +	-7.7 J/mol-K	(B) -7.7	I/mol-K	(C) +14.3	J/mol-K
(D) 1	None of the above				
14. The	normal boiling point of	Br₂(liq) is app	roximately:		
(A) 5	58 °C	(B) 83 °C		(C) 331 °C	
(D) 1	Depends upon the ma	gnitude of ΔS	univ		
Ener	ider the gas phase reagy of Formation of NO brium constant, K, at	$OCI(g)$ is $\Delta G_f^0(I)$	NOCI) = +66.1 k		
(A) 2	2.6x10 ⁻¹²	(B) 6.5x10 ⁻²⁴	(C) 1.	5x10 ²³	
6 7	nsufficient data is give	en to determin	e the equilibriur	n constant)	
at 25	equilibrium constant fo °C. What is the appr O₅(g)?				
(A) -	118. kJ/mol	(B) -236. I	cJ/mol d	(C) +118 kJ	/mol)
(D) I	nsufficient data is give	en to determin	e ∆Gr ⁰ (N₂O₅)		
K = 1	he reaction, 2 SO ₂ (g) 50. at 300 °C. What i hen P(SO ₂) = 0.10 ba	s the approxir	nate value of ∆0	G for this reacti	
(A) +	-10.1 kJ (B) -2	23.9 kJ	(C) +34.0 kJ	(D) -5	7.8 kJ
	ne reaction, 2 HI(g) ⇌ ion is favor				
(A) F	Product , 319 ºC	(B)	Product , 46 °C		
(C) F	Reactant , 319 °C	(D)	Reactant , 46 º	2)	
resid	scussed in class, hyd e in the interior of prote e exterior of the prote	teins' tertiary s	structure. The r		
(A)]	ower the entropy of th	<u>e surrounding</u>	water molecule	98 ⁾	
(B) r	aise the entropy of the	e surrounding	water molecule	S	
(C) t	aise the enthalpy of th	ne non-polar s	sidechain		
(D) I	nydrogen bond with th	e surrounding	water moleciul	es	

Vensor A double of

20. In class, we discussed the thermodynami	ics of the formation of doubly stranded
DNA by base-pairing of nucleic acids in the	ne individual strands. Let's consider the
breaking of one base-pair (e.g. Adenine-	Thymine)in the unravelling of doubly
stranded DNA. For this process, △Ho is _	and ∆Sº is

(A) Negative, Negative

(B) Positive, Positive

(C) Positive, Negative

- (D) Negative, Positive
- 21. Regarding the following reaction, which of the statements below is/are **Not correct?**

$$2 \text{ ReO}_4^-(\text{aq}) + 5 \text{ C}_2\text{O}_4^{2-}(\text{aq}) \rightarrow 2 \text{ Re}^{2+} + 10 \text{ CO}_2$$

$$\times (1) \text{ Re}^{2+} \text{ is reduced}$$

$$\times (2) \text{ C}_2\text{O}_4^{2-} \text{ is Oxidized}$$

$$\times (3) \text{ C}_2\text{O}_4^{2-} \text{ is the reducing agent}$$

$$\times (4) \text{ Five (5) electrons are transferred}$$

$$\times (2) \text{ C}_2\text{O}_4^{2-} \text{ is Oxidized}$$

$$\times (4) \text{ Five (5) electrons are transferred}$$

$$\times (2) \text{ C}_2\text{O}_4^{2-} \text{ is Oxidized}$$

$$\times (4) \text{ Five (5) electrons are transferred}$$

$$\times (4) \text{ Five (5) electrons are transferred}$$

PART II. FOUR (4) PROBLEMS: REMEMBER TO SHOW WORK FOR CREDIT

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{x} 10^{-3} \text{ kJ/mol-K}$

(5) 1. Write a balanced half reaction in **aqueous Acid** solution for the reaction of I₂ to form the IO₃ ion.

I2 -> 2703

Mult ight by 2

To 61201 -> 278+121 +10e

Add 640 to hell .

tile to with

Vension A

(10) 2. Balance the following oxidation-reduction reaction in aqueous Basic solution.

 $C_2O_4^{2-} + MnO_4 \rightarrow CO_2 + Mn^{2+}$ Ox: C203 -202+20 & Ald 20- 15 mph. Rd. Mn04+8h+se > Mn +4h20 < sll 4 180 to Wh Matt. Oxbys fell by 2 fall, to se Thele. 5 G On o 2 Maly 16 W ryfe -> 10 Co offe + 2m +8HO Abl 1600 To end orle 5 G Oy + 2 Mn Cy + 18 M2 D -> 10 Co, +2 Mn +8 M2 O + 16 ON 5604 & 2 My Oy + 8 M20 -> 10 Ca & 2 My + 16 ON (carelled the)

Versun A

(08) 3. Barium Phosphate, Ba₃(PO₄)₂(s), is a sparingly soluble salt with $K_{sp} = 3.0 \times 10^{-23}$. 6.0 L of 1.50x10⁻⁴ M Ba(NO₃)₂(aq) is mixed with 4.0 L of 1.00x10⁻⁵ M Na₃PO₄(aq). Use this data to calculate whether or not any Ba₃(PO₄)₂(s) will precipitate when the two solutions are mixed.

You MUST show your calculation to receive credit.

Use Fin = Cint x Vant

 $[B_{\alpha}^{3}] = 1.5 \times 10^{4} \text{m} \times \frac{8}{684} = 9.0 \times 10^{-5} \text{M}$ $[B_{\alpha}^{3}] = 1.0 \times 10^{5} \text{m} \times \frac{24}{644} = 4.0 \times 10^{-6} \text{M}$

Baz (Pay), = 3 Barb + 2 Per

Q=[Bar] = Par] =

= (9.0×10-5)3(4.0×10-6)

12473K

Versin A

(14) 4. Consider the gas phase equilibrium $2 \text{ PBr}_3(g) + O_2(g) \rightleftharpoons 2 \text{ POBr}_3(g)$. The equilibrium constant for this reaction is K = 0.04 at $200 \, ^{\circ}\text{C}$.

(10) (a) If the pressures of $O_2(g)$ and $POBr_3(g)$ are both 0.55 bar, what is the pressure of $PBr_3(g)$ if the Gibbs Free Energy change is $\Delta G = 7.00$ kJ at 200 °C?

360=-RThk= -(0,00831)(473) h (0,04) = 12,68 M

262 26° 12ThQ-, hQ = 26-26° = 200-1265 AT (000831)(473)

= -1.487 7 P=0.487

Q = 0,237 = Propos = (0.00) = 0.00 Pros Par Pars (0.00) = 0.00 Pros = 0.00

PBy = 0.07 = 2.32

PPB/3 = 52.32 2/652 bar.

(4) (b) What is the value of K for the related reaction, $POBr_3(g) \rightleftharpoons PBr_3(g) + \frac{1}{2} O_{2g}$

We have reversel & he wel the realw

6 R'= 1/2 = (0,04/2 = 5.0)

CHEM 1423 - Exam 4 - April 21, 2016

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{x} 10^{-3} \text{ kJ/mol-K}$

(63) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. The solubility products of two sparingly soluble Lead(II) [Pb²⁺] salts are: $Pb(CIO_3)_2 - K_{sp} = 5.6x10^{-13}$, $Pb3O_4 - K_{sp} = 1.6x10^{-8}$.

Consider a solution which initially contains 1.0x10⁻⁵ M ClO₃-(ag) and 1.0x10⁻⁵ M SO₄²-(aq). Pb(NO₃)₂ (a strong electrolyte) is added until $[Pb^{2+}] = 7.0x10^{-3} M.$

Which of the above salts will form any solid precipitate?

- (A) Pb(ClO₃)₂ only
- (B) PbSO₄ only

(C) Both Pb(ClO₃)₂ and PbSO₄

(D) Neither Pb(ClO₃)₂ nor PbSO₄

For #2 - #3: Consider the sparingly soluble compound, Lanthanium Iodate, [La(IO₃)₃]. The solubility product constant is $K_{sp} = 7.5 \times 10^{-12}$.

2. What is the solubility of La(IO₃)₃ in pure water?

- What is the concentration of iodate ions, [IO₃-], in a solution containing 2.0 M La(NO₃)₃ (which is a strong electrolyte)?

(A) 4.7×10^{-4} M (B) 5.2×10^{-5} M (C) 6.5×10^{-7} M (D) 1.6×10^{-4} M

- 4. Consider the reaction: $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$, $\Delta H^o > 0$. This reaction is:
 - (A) Product Favored at all temperatures
 - (B) Reactant Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature
- 5. Which of the following statements is/are NOT correct?
 - χ (1) The entropy change on crystallizing liquid is positive
 - (2) The entropy usually increases when a liquid is dissolved in a second liquid
 - λ (3) The entropy of CaO(s) is higher than the entropy of CaCO₃(s)
 - λ (4) The entropy increases when a gas dissolves in a liquid
 - (A) 1&4
- (B) 1 & 3
- (C) 1&3&4
- (D) 2 only

VersonB

6.	I he normal boiling point of methane [CH ₄ , M=16] is -162 °C. The Enthalpy of Vaporization of methane is 8.5 kJ/mol. What is the entropy change of the <u>system</u> when 40 g of methane gas condenses to the liquid at -162 °C?								of	
	(A) +19	91 J/K	(B)	-191 J/K	>	((C) -13	1 J/K		
	(D) Re	quires the va	alue of the	Entropy of	Vapor	rization				
7.		reaction, <i>CP</i>	J	· - ·	- `				iar tha	
ΔS° = +221 J/K. What is the entropy change of the surroundings , ΔS_{surr} , for related reaction, $\frac{1}{2}CH_3OH(g) \Longrightarrow \frac{1}{2}CO(g) + 1H_2(g)$, at 25 °C?										
	(A) +11	11 J/K	(B) +153	3 J/K	(C)	-153 J/K		(D) -111 J/	K	
For #	8 - #9: (Consider the	reaction:	2 Fe ₂ O ₃ (s)	→ 4	Fe(s) + 3 (O ₂ (g)			
		Fe ₂ O ₃ (s)		Fe(s)		O ₂ (g)				
Sm°(2	25 °C)	87 J/mol-K	2	27 J/mol-K	20	05 J/mol-K				
ΔG f⁰ (25 ° C) -742 kJ/mol										
8.	What is	∆G° for the	above rea	ction [at 25	5 °C] ?					
	(A) +14	184 kJ	(B)	+742 kJ		(C) -	1484 k	(J		
	(D) Ins	ufficient Info	rmation is	Given						
9.	9. What is the Enthalpy Change, △Hº, for the above reaction [at 25 °C]									
	(A) -13	20 kJ	(B)	+1648 kJ)		(C) +	1320 H	, (J		
	(D) Ins	ufficient Info	rmation is	Given		` '				
10. For the hypothetical reaction, $A \rightleftharpoons B$, $\Delta S^{\circ} = -70$ J/K (independent of temperature). The equilibrium constant for the reaction at 150 °C is 2.0×10^{-3} . What is the enthalpy change, ΔH° for this reaction?										
	(A) +5°	1.5 kJ	(B) -37.3	kJ	(C) -5	51.5 kJ		7.8 kJ		
11. For the <u>exergonic</u> reaction, $C \rightarrow D$, $\Delta H = +25$ kJ. For this reaction,										
	(A) $\Delta G < 0 \& \Delta S < 0$ (B) $\Delta G > 0 \& \Delta S < 0$ (C) $\Delta G < 0 \& \Delta S > 0$ (D) $\Delta G > 0 \& \Delta S > 0$									
12		action, $A \rightarrow B$ an be conclu) J/K.	
	(A) AH	> +11.9 kJ	(E	3) ∆H < -1	1.9 kJ		(C) ΔI	H > 18.4 kJ		
	(D) No	conclusion	can be ma	de about 🛭	ΔH					

Vyen B

13.	The equilibrium constant for at 25 °C. What is the approof $N_2O_5(g)$?					
((A) +118. kJ/mo>	(B) -236	3. kJ/mol	(C) -118	kJ/mol
	(D) Insufficient data is give	en to determ	iine ∆Gr ⁰ (Na	2O5)		
14.	Consider the gas phase rea Energy of Formation of NO equilibrium constant, K, at	Cl(g) is ∆G	0(NOCI) = +	⊦66.1 kJ/m		
	(A) 2.6x10 ⁻¹²	(B) 6.5x10 ⁻¹	24	(C) 1.5x1	023	
((D) Insufficient data is give	en to detern	line the equ	uilibrium co	nstant	
	- #16: The Enthalpy of Varation of Br ₂ (liq) is 89.0 J/mo	•	f Br₂(liq) is	29.5 kJ/m	ol. The E	ntropy of
15.	The Entropy change of the condenses to Br ₂ (liq) at 90			one mole	of Br ₂ (ga	s)
	(A) +7.7 J/mol-K	(B) -7.	7 J/mol-K		(C) +14.	3 J/mol-K
	(D) None of the above					
16.	The normal boiling point of	Br₂(liq) is a	pproximate	ely:		
	(A) 331 °C	(B) 83 °C			58 °C)
	(D) Depends upon the ma	gnitude of 2	Suniv			
17.	For the reaction, 2 HI(g) ⇒ reaction is favor					
	(A) Reactant , 46 °C	(B) Product,	46 °C		
	(C) Reactant, 319 °C	(E) Product ,	, 319 °C		
18.	For the reaction, 2 SO ₂ (g) K = 150. at 300 °C. What °C when P(SO ₂) = 0.10 ba	is the appro	ximate valu	ie of ∆G fo	r this rea	ction at 300
	(A) -57.8 kJ (B) +	10.1 kJ	(C) +34	4.0 kJ	(D)	-23.9 kJ
19.	In class, we discussed the DNA by base-pairing of nu breaking of one base-pair stranded DNA. For this pr	icleic acids (e.g. Adeni	in the indivi	dual strance)in the un	ds. Let's ravelling	consider the of doubly
	(A) Negative, Negative		(B) Nega	<u>itive,</u> Posit	ive	
	(C) Positive, Negative		(D) Posit	ive, Positiv)è	

Osm B

- 20. As discussed in class, hydrophobic (non-polar) amino acid sidechains tend to reside in the interior of proteins' tertiary structure. The reason they do not reside on the exterior of the protein is that they would
 - (A) raise the entropy of the surrounding water molecules
 - (B) lower the entropy of the surrounding water molecules
 - (C) raise the enthalpy of the non-polar sidechain
 - (D) hydrogen bond with the surrounding water moleciules
- 21. Regarding the following reaction, which of the statements below is/are Not correct?

 $2 \text{ ReO}_4^{-}(aq) + 5 \text{ C}_2\text{O}_4^{2-}(aq) \rightarrow 2 \text{ Re}^{2+} + 10 \text{ CO}_2$

(1) Re2+ is reduced

- (2) C₂O₄² is Oxidized
- (3) C₂O₄²- is the reducing agent
- (4) Five (5) electrons are transfered

- (A) 4 only
- (B) 2 & 3
- (C) 2 & 4

(D) 1&4

FOUR (4) PROBLEMS: REMEMBER TO SHOW WORK FOR CREDIT PART II.

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{x}10^{-3} \text{ kJ/mol-K}$

7, 56 MD - 2 73 + 12 Wolle

(5)Write a balanced half reaction in aqueous Acid solution for the reaction of l2 to form the IO₃ ion.

In -> 2 IO3 Mall right by

Add 6 As 0 to half, t 12 Ut to right, t 10e to with

Kerson B.

Balance the following oxidation-reduction reaction in aqueous Basic solution.

 $C_2O_4^{2-} + MnO_4^- \rightarrow CO_2 + Mn^{2+}$ Ox: C, Ox -2 CO2+20 < All 20 7 mpl. Rd. MnOy+8h+se mn +4h, d < All 4 Boto Will Mett. Oxys - pel by 2 - sell to to to 5 G On t 2 Maly the Wayle > 1000 plpe + 2m +8HO All 1600 a ent orte 5 G By + 2 Mn by + 18 M2 D - 10 CO, +2 Mn +8 MO + 16 00 5604 + 2 My Oy + 8 M20 -> 10 Ca + 2 My + 16 0M carelfed the

Verson B

(08) 3. Barium Phosphate, Ba₃(PO₄)₂(s), is a sparingly soluble salt with K_{sp} = 3.0x10⁻²³.
 6.0 L of 2.5x10⁻⁴ M Ba(NO₃)₂(aq) is mixed with 4.0 L of 1.00x10⁻⁵ M Na₃PO₄(aq).
 Use this data to calculate whether or not any Ba₃(PO₄)₂(s) will precipitate when the two solutions are mixed.

You MUST show your calculation to receive credit.

Use CFT Cind x Vinds

 $[B_{n}^{2}] = 25 \times 10^{4} \text{m} \times \frac{6}{684} = 1.5 \times 10^{4} \text{m}$ $[B_{n}^{2}] = 1.0 \times 10^{4} \text{m} \times \frac{4}{684} = 4.0 \times 10^{6} \text{m}$

Ba3Pay = 3 Rn + 2 Pay $Q = [Ra^{3}][Pay-]^{3}$ $= (65 \times 10^{4})^{3} (40 \times 10^{6})^{2}$

Q = 5.4 ×10 2 > Rsp (=3×10 13)

Some Uhl/ prespitato

Sace Q> Kep

Unson B

(14) 4. Consider the gas phase equilibrium, $2 \text{ PBr}_3(g) + O_2(g) \rightleftharpoons 2 \text{ POBr}_3(g)$. The equilibrium constant for this reaction is K = 0.04 at $200 \, ^{\circ}\text{C}$.

(10) (a) If the pressures of $O_2(g)$ and $POBr_3(g)$ are both 0.65 bar, what is the pressure of $PBr_3(g)$ if the Gibbs Free Energy change is $\Delta G = 7.00$ kJ at 200 °C?

262 - RT h k = -(0.0083)/473 h (404) = /2.68 R 262 - RT h k = -(0.0083)/473 h (404) = /2.68 R 262 - RT h k = -(0.0083)/473 h (404) = /2.68 R RD = 2.00 - (7.68) = 2.00 - (7.68) = (2.0083)/473 RD = 20.0083/473 = 20.0083/473 RD = 20.0083/473 = 20.0083/473

(4) (b) What is the value of K for the related reaction, $POBr_3(g) \rightleftharpoons PBr_3(g) + \frac{1}{2}O_2g$

We have reversel & helvel the reach

& K= 1 = 1 = 1 = 5.0