CHEM 1423 - Exam 4 - April 21, 2016 - Version A

Name_____

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

(63) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1 - #2: Consider the sparingly soluble compound, Lanthanium Iodate, $[La(IO_3)_3]$. The solubility product constant is K_{sp} = 7.5x10⁻¹².

1. What is the solubility of La(IO₃)₃ in pure water?

(A) 1.7×10^{-3} M (B) 7.3×10^{-4} (C) 6.5×10^{-5} M (D) 1.2×10^{-4} M

- 2. What is the **concentration of iodate ions**, [IO₃⁻], in a solution containing 2.0 M La(NO₃)₃ (which is a strong electrolyte)?
 - (A) 4.7×10^{-4} M (B) 5.2×10^{-5} M (C) 1.6×10^{-4} M (D) 6.5×10^{-7} M
- 3. The solubility products of two sparingly soluble Lead(II) [Pb²⁺] salts are: $Pb(CIO_3)_2 K_{sp} = 5.6 \times 10^{-13}$, $PbSO_4 K_{sp} = 1.6 \times 10^{-8}$.

Consider a solution which initially contains $1.0x10^{-5}$ M ClO₃^{-(aq)} and $1.0x10^{-5}$ M SO₄^{2-(aq)}. Pb(NO₃)₂ (a strong electrolyte) is added until [Pb²⁺] = $7.0x10^{-3}$ M.

Which of the above salts will form any solid precipitate?

- (A) Pb(ClO₃)₂ only (B) PbSO₄ only (C) Neither Pb(ClO₃)₂ nor PbSO₄
- (D) Both Pb(ClO₃)₂ and PbSO₄
- 4. Which of the following statements is/are **NOT** correct?
 - (1) The entropy change on crystallizing liquid is positive
 - (2) The entropy usually increases when a liquid is dissolved in a second liquid
 - (3) The entropy of CaO(s) is higher than the entropy of $CaCO_3(s)$
 - (4) The entropy increases when a gas dissolves in a liquid
 - (A) 1 & 4 (B) 1 & 3 & 4 (C) 1 & 3 (D) 2 only
- 5. Consider the reaction: $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$, $\Delta H^o > 0$. This reaction is:
 - (A) Reactant Favored at all temperatures
 - (B) Product Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature

Version A

6. For the hypothetical reaction, $A \rightleftharpoons B$, $\Delta S^{\circ} = -70 \text{ J/K}$ (independent of temperature). The equilibrium constant for the reaction at 150 °C is 2.0×10^{-3} . What is the enthalpy change, ΔH° for this reaction?

(A) +51.5 kJ (B) -37.3 kJ (C) -7.8 kJ (D) -51.5 kJ

- 7. For the reaction, $CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$, $\Delta H^\circ = +91$ kJ and $\Delta S^\circ = +221$ J/K. What is the entropy change of the **surroundings**, ΔS_{surr} , for the related reaction, $\frac{1}{2}CH_3OH(g) \rightleftharpoons \frac{1}{2}CO(g) + 1H_2(g)$, at 25 °C? (A) +111 J/K (B) +153 J/K (C) -111 J/K (D) -153 J/K
- 8. The normal boiling point of methane [CH₄, M=16] is -162 °C. The Enthalpy of Vaporization of methane is 8.5 kJ/mol. What is the entropy change of the **system** when 40 g of methane gas condenses to the liquid at -162 °C?
 - (A) -191 J/K (B) +191 J/K (C) -131 J/K
 - (D) Requires the value of the Entropy of Vaporization

For #9 - #10: Consider the reaction: $2 \operatorname{Fe_2O_3(s)} \rightarrow 4 \operatorname{Fe(s)} + 3 \operatorname{O_2(g)}$

Fe ₂ O ₃ (s)		Fe(s)	O2(g)	
	07 1/22 21/2	07 1/22 21 1/		

Sm°(25 °C) 87 J/mol-K 27 J/mol-K 205 J/mol-K

∆Gf°**(25 °C)** -742 kJ/mol

- 9. What is ΔG° for the above reaction [at 25 °C]?
 - (A) -1484 kJ (B) +742 kJ (C) +1484 kJ
 - (D) Insufficient Information is Given
- 10. What is the Enthalpy Change, ΔH° , for the above reaction [at 25 °C]
 - (A) +1648 kJ (B) -1320 kJ (C) +1320 kJ
 - (D) Insufficient Information is Given
- 11. The reaction, $A \rightarrow B$, is <u>endergonic</u> at 25 °C and the entropy change is +40 J/K. What can be concluded about the enthalpy change for this reaction?
 - (A) $\Delta H < -11.9 \text{ kJ}$ (B) $\Delta H > +11.9 \text{ kJ}$ (C) $\Delta H > 18.4 \text{ kJ}$

(D) No conclusion can be made about ΔH

- 12. For the <u>exergonic</u> reaction, $C \rightarrow D$, $\Delta H = +25$ kJ. For this reaction,
 - (A) $\Delta G < 0 \& \Delta S < 0$ (B) $\Delta G > 0 \& \Delta S < 0$ (C) $\Delta G > 0 \& \Delta S > 0$ (D) $\Delta G < 0 \& \Delta S > 0$

Version A

For #13 - #14: The Enthalpy of Vaporization of Br₂(liq) is 29.5 kJ/mol. The Entropy of Vaporization of Br₂(liq) is 89.0 J/mol-K.

- 13. The Entropy change of the universe, ∆S_{univ}, when one mole of Br₂(gas) condenses to Br₂(liq) at 90 °C is approximately:
 - (A) +7.7 J/mol-K (B) -7.7 J/mol-K (C) +14.3 J/mol-K
 - (D) None of the above
- 14. The normal boiling point of Br₂(liq) is approximately:
 - (A) 58 °C (B) 83 °C (C) 331 °C
 - (D) Depends upon the magnitude of ΔS_{univ}
- 15. Consider the gas phase reaction, $2 \text{ NO}(g) + \text{Cl}_2(g) \Rightarrow 2 \text{ NOCI}(g)$. The Gibbs Free Energy of Formation of NOCI(g) is $\Delta G_f^0(\text{NOCI}) = +66.1 \text{ kJ/mol}$. The value of the equilibrium constant, K, at 25 °C is approximately:
 - (A) 2.6x10⁻¹² (B) 6.5x10⁻²⁴ (C) 1.5x10²³
 - (D) Insufficient data is given to determine the equilibrium constant
- 16. The equilibrium constant for the reaction, $2 N_2O_5 \Rightarrow 2 N_2(g) + 5 O_2(g)$, is 2.4×10^{41} at 25 °C. What is the approximate value of the Gibbs Free Energy of Formation of N₂O₅(g)?
 - (A) -118. kJ/mol (B) -236. kJ/mol (C) +118 kJ/mol
 - (D) Insufficient data is given to determine $\Delta G_f^0(N_2O_5)$
- 17. For the reaction, $2 \text{ SO}_2(g) + O_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$, the equilibrium constant is K = 150. at 300 °C. What is the approximate value of ΔG for this reaction at 300 °C when $P(SO_2) = 0.10$ bar, $P(O_2) = 0.50$ bar, and $P(SO_3) = 2.5$ bar?
 - (A) +10.1 kJ (B) -23.9 kJ (C) +34.0 kJ (D) -57.8 kJ
- 18. For the reaction, 2 HI(g) \Rightarrow H₂(g) + I₂(g), Δ H^o = 53 kJ and Δ S^o = -166 J/K. This reaction is ______ favored at temperatures **above** ______ °C (Celsius).
 - (A) Product , 319 °C (B) Product , 46 °C
 - (C) Reactant , 319 °C (D) Reactant , 46 °C
- As discussed in class, hydrophobic (non-polar) amino acid sidechains tend to reside in the interior of proteins' tertiary structure. The reason they do <u>not</u> reside on the exterior of the protein is that they would
 - (A) lower the entropy of the surrounding water molecules
 - (B) raise the entropy of the surrounding water molecules
 - (C) raise the enthalpy of the non-polar sidechain
 - (D) hydrogen bond with the surrounding water moleciules

Version A

- 20. In class, we discussed the thermodynamics of the formation of doubly stranded DNA by base-pairing of nucleic acids in the individual strands. Let's consider the **breaking** of one base-pair (e.g. Adenine-Thymine)in the unravelling of doubly stranded DNA. For this process, ΔH° is _____ and ΔS° is _____
 - (A) Negative, Negative (B) Positive, Positive
 - (C) Positive, Negative (D) Negative, Positive
- 21. Regarding the following reaction, which of the statements below is/are **Not correct**?

 $2 \text{ ReO}_4(aq) + 5 \text{ C}_2\text{O}_4(aq) \rightarrow 2 \text{ Re}^{2+} + 10 \text{ CO}_2$

(1) Re^{2+} is reduced (3) $\text{C}_2\text{O}_4^{2-}$ is the reducing agent		 (2) C₂O_{4²⁻ is Oxidized} (4) Five (5) electrons are transfered 			
(A) 1 & 4	(B) 2 & 3	(C) 2 & 4	(D) 4 only		

PART II. FOUR (4) PROBLEMS : REMEMBER TO SHOW WORK FOR CREDIT

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

- (5) 1. Write a balanced half reaction in aqueous Acid solution for the reaction of I₂ to form the IO₃⁻ ion.
- (10) 2. Balance the following oxidation-reduction reaction in **aqueous Basic** solution.

 $C_2O_4^{2-} + MnO_4^- \rightarrow CO_2 + Mn^{2+}$

(08) 3. Barium Phosphate, Ba₃(PO₄)₂(s), is a sparingly soluble salt with K_{sp} = 3.0x10⁻²³.
6.0 L of 1.50x10⁻⁴ M Ba(NO₃)₂(aq) is mixed with 4.0 L of 1.00x10⁻⁵ M Na₃PO₄(aq). Use this data to **calculate whether or not** any Ba₃(PO₄)₂(s) will precipitate when the two solutions are mixed.

You MUST show your calculation to receive credit.

- (14) 4. Consider the gas phase equilibrium, $2 PBr_3(g) + O_2(g) \rightleftharpoons 2 POBr_3(g)$. The equilibrium constant for this reaction is K = 0.04 at 200 °C.
 - (10) (a) If the pressures of O₂(g) and POBr₃(g) are both 0.55 bar, what is the pressure of PBr₃(g) if the Gibbs Free Energy change is $\Delta G = 7.00$ kJ at 200 °C?
 - (4) (b) What is the value of K for the related reaction, $POBr_3(g) \Rightarrow PBr_3(g) + \frac{1}{2}O_2g$)

CHEM 1423 - Exam 4 – April 21, 2016 - Version B

Name_____

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

(63) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

1. The solubility products of two sparingly soluble Lead(II) [Pb²⁺] salts are: $Pb(CIO_3)_2 - K_{sp} = 5.6x10^{-13}$, $PbSO_4 - K_{sp} = 1.6x10^{-8}$.

Consider a solution which initially contains $1.0x10^{-5}$ M ClO₃⁻(aq) and $1.0x10^{-5}$ M SO₄²⁻(aq). Pb(NO₃)₂ (a strong electrolyte) is added until [Pb²⁺] = $7.0x10^{-3}$ M.

Which of the above salts will form any solid precipitate?

- (A) $Pb(CIO_3)_2$ only (B) $PbSO_4$ only (C) Both $Pb(CIO_3)_2$ and $PbSO_4$
- (D) Neither Pb(ClO₃)₂ nor PbSO₄

For #2 - #3: Consider the sparingly soluble compound, Lanthanium Iodate, $[La(IO_3)_3]$. The solubility product constant is K_{sp} = 7.5x10⁻¹².

2. What is the solubility of $La(IO_3)_3$ in pure water?

(A) 7.3×10^{-4} M (B) 1.7×10^{-3} (C) 6.5×10^{-5} M (D) 1.2×10^{-4} M

3. What is the **concentration of iodate ions**, [IO₃⁻], in a solution containing 2.0 M La(NO₃)₃ (which is a strong electrolyte)?

(A) 4.7×10^{-4} M (B) 5.2×10^{-5} M (C) 6.5×10^{-7} M (D) 1.6×10^{-4} M

- 4. Consider the reaction: $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$, $\Delta H^o > 0$. This reaction is:
 - (A) Product Favored at all temperatures
 - (B) Reactant Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature
- 5. Which of the following statements is/are NOT correct?
 - (1) The entropy change on crystallizing liquid is positive
 - (2) The entropy usually increases when a liquid is dissolved in a second liquid
 - (3) The entropy of CaO(s) is higher than the entropy of CaCO₃(s)
 - (4) The entropy increases when a gas dissolves in a liquid
 - (A) 1 & 4 (B) 1 & 3 (C) 1 & 3 & 4 (D) 2 only

Version B

6.	The normal boiling point of methane [CH ₄ , M=16] is -162 °C. The Enthalpy of Vaporization of methane is 8.5 kJ/mol. What is the entropy change of the system when 40 g of methane gas condenses to the liquid at -162 °C?								
	(A) +191 J/K		(B)	-191 J/K		(0	(C) -131 J/K		
	(D) Requires the value of the Entropy of Vaporization								
7.	For the reaction, $CH_3OH(g) \longrightarrow CO(g) + 2H_2(g)$, $\Delta H^\circ = +91$ kJ and								
	$\Delta S^{\circ} = +221 \text{ J/K}$. What is the entropy change of the surroundings , ΔS_{surr} , for the related reaction, $\frac{1}{2}CH_3OH(g) \rightleftharpoons \frac{1}{2}CO(g) + 1H_2(g)$, at 25 °C?								
	(A) +1	11 J/K	(B) +153	3 J/K	(C)	-153 J/K	(D) -111 J/K	
For #8 - #9: Consider the reaction: $2 \text{ Fe}_2O_3(s) \rightarrow 4 \text{ Fe}(s) + 3 O_2(g)$									
		Fe ₂ O ₃ (s)		Fe(s)		O ₂ (g)			
S m° (2	25 °C)	87 J/mol-K	4	27 J/mol-k	K 20	05 J/mol-K			
∆ G f ^o (2	25 °C)	-742 kJ/ma	bl						
8.	What is	s ΔG^{o} for the	above read	ction [at 2	5 °C] ?				
	(A) +1	484 kJ	(B)	+742 kJ		(C) -	1484 kJ		
	(D) Ins	sufficient Info	rmation is	Given					
9.	What is	s the Enthalp	y Change,	ΔH^{o} , for tl	he abo	ve reactior	n [at 25 '	°C]	
	(A) -13	320 kJ	(B) -	+1648 kJ		(C) +	1320 kJ		
	(D) Insufficient Information is Given								
10. For the hypothetical reaction, $A \Rightarrow B$, $\Delta S^{\circ} = -70$ J/K (independent of temperature). The equilibrium constant for the reaction at 150 °C is 2.0x10 ⁻³ . What is the enthalpy change, ΔH° for this reaction?									
	(A) +5	1.5 kJ	(B) -37.3	kJ	(C) -	51.5 kJ	(D)	-7.8 kJ	
11.	For the	e <u>exergonic</u>	reaction, C	\rightarrow D, Δ H	= +25	kJ. For thi	s reaction	on,	
	(A) ∆G	G<0 & ∆S<0	(B) ∆G>0	& ∆S<0	(C) ∆G	G<0 & ∆S>	0 (D) 🛆	AG>0 & ∆S>0	1
12.	12. The reaction, A \rightarrow B, is endergonic at 25 °C and the entropy change is +40 J/K. What can be concluded about the enthalpy change for this reaction?								
	. ,	l > +11.9 kJ conclusion	,	8) ∆H < -1 de about ∠		((C) ∆H	> 18.4 kJ	

Version B

- 13. The equilibrium constant for the reaction, $2 N_2O_5 \rightleftharpoons 2 N_2(g) + 5 O_2(g)$, is 2.4×10^{41} at 25 °C. What is the approximate value of the Gibbs Free Energy of Formation of N₂O₅(g)?
 - (A) +118. kJ/mol (B) -236. kJ/mol (C) -118 kJ/mol
 - (D) Insufficient data is given to determine $\Delta G_f^0(N_2O_5)$
- 14. Consider the gas phase reaction, $2 \text{ NO}(g) + \text{Cl}_2(g) \Rightarrow 2 \text{ NOCI}(g)$. The Gibbs Free Energy of Formation of NOCI(g) is $\Delta G_f^0(\text{NOCI}) = +66.1 \text{ kJ/mol}$. The value of the equilibrium constant, K, at 25 °C is approximately:
 - (A) 2.6x10⁻¹² (B) 6.5x10⁻²⁴ (C) 1.5x10²³
 - (D) Insufficient data is given to determine the equilibrium constant

For #15 - #16: The Enthalpy of Vaporization of Br₂(liq) is 29.5 kJ/mol. The Entropy of Vaporization of Br₂(liq) is 89.0 J/mol-K.

- 15. The Entropy change of the universe, ∆S_{univ}, when one mole of Br₂(gas) condenses to Br₂(liq) at 90 °C is approximately:
 - (A) +7.7 J/mol-K (B) -7.7 J/mol-K (C) +14.3 J/mol-K
 - (D) None of the above
- 16. The normal boiling point of Br₂(liq) is approximately:
 - (A) 331 °C (B) 83 °C (C) 58 °C
 - (D) Depends upon the magnitude of ΔS_{univ}
- 17. For the reaction, 2 HI(g) \Rightarrow H₂(g) + I₂(g), Δ H^o = 53 kJ and Δ S^o = -166 J/K. This reaction is ______ favored at temperatures **above** ______ °C (Celsius).
 - (A) Reactant , 46 °C (B) Product , 46 °C
 - (C) Reactant , 319 °C (D) Product , 319 °C
- 18. For the reaction, $2 \text{ SO}_2(g) + O_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$, the equilibrium constant is K = 150. at 300 °C. What is the approximate value of ΔG for this reaction at 300 °C when P(SO₂) = 0.10 bar, P(O₂) = 0.50 bar, and P(SO₃) = 2.5 bar?
 - (A) -57.8 kJ (B) +10.1 kJ (C) +34.0 kJ (D) -23.9 kJ
- 19. In class, we discussed the thermodynamics of the formation of doubly stranded DNA by base-pairing of nucleic acids in the individual strands. Let's consider the **breaking** of one base-pair (e.g. Adenine-Thymine)in the unravelling of doubly stranded DNA. For this process, ΔH° is _____ and ΔS° is _____
 - (A) Negative, Negative (B) Negative, Positive
 - (C) Positive, Negative (D) Positive, Positive

Version B

- 20. As discussed in class, hydrophobic (non-polar) amino acid sidechains tend to reside in the interior of proteins' tertiary structure. The reason they do <u>not</u> reside on the exterior of the protein is that they would
 - (A) raise the entropy of the surrounding water molecules
 - (B) lower the entropy of the surrounding water molecules
 - (C) raise the enthalpy of the non-polar sidechain
 - (D) hydrogen bond with the surrounding water moleciules
- 21. Regarding the following reaction, which of the statements below is/are **Not correct**?

 $2 \text{ ReO}_{4}(aq) + 5 \text{ C}_{2}\text{O}_{4}^{2-}(aq) \rightarrow 2 \text{ Re}^{2+} + 10 \text{ CO}_{2}$

(1) Re²⁺ is reduced

- (2) $C_2O_4^{2-}$ is Oxidized
- (3) $C_2O_4^{2-}$ is the reducing agent (4) Five (5) electrons are transfered
- (A) 4 only (B) 2 & 3 (C) 2 & 4 (D) 1 & 4

PART II. FOUR (4) PROBLEMS : REMEMBER TO SHOW WORK FOR CREDIT

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

- (5) 1. Write a balanced half reaction in aqueous Acid solution for the reaction of l₂ to form the IO₃⁻ ion.
- (10) 2. Balance the following oxidation-reduction reaction in **aqueous Basic** solution.

 $C_2O_4^{2-} + MnO_4^- \rightarrow CO_2 + Mn^{2+}$

(08) 3. Barium Phosphate, Ba₃(PO₄)₂(s), is a sparingly soluble salt with $K_{sp} = 3.0 \times 10^{-23}$. 6.0 L of 2.5x10⁻⁴ M Ba(NO₃)₂(aq) is mixed with 4.0 L of 1.00x10⁻⁵ M Na₃PO₄(aq).

Use this data to **calculate whether or not** any $Ba_3(PO_4)_2(s)$ will precipitate when the two solutions are mixed.

You MUST show your calculation to receive credit.

- (14) 4. Consider the gas phase equilibrium, $2 PBr_3(g) + O_2(g) \rightleftharpoons 2 POBr_3(g)$. The equilibrium constant for this reaction is K = 0.04 at 200 °C.
 - (10) (a) If the pressures of O₂(g) and POBr₃(g) are both 0.65 bar, what is the pressure of PBr₃(g) if the Gibbs Free Energy change is $\Delta G = 7.00$ kJ at 200 °C?
 - (4) (b) What is the value of K for the related reaction, $POBr_3(g) \Rightarrow PBr_3(g) + \frac{1}{2}O_2g$)