CHEM 1423 - Exam 4 – April 20, 2017 - Version A

Name_____

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

1. The solubility of lead (II) arsenate, Pb₃(AsO₄)₂, in pure water is 3.3x10⁻⁸ M. The solubility product, K_{sp}, of lead (II) arsenate is approximately:

(A) 1.4x10⁻³⁶ (B) 3.9x10⁻³⁸ (C) 2.8x10⁻³⁶ (D) 4.2x10⁻³⁶

For #2 - #3: consider the slightly soluble compound, $Pbl_2(s)$. The solubility product (aka solubility constant) is $K_{sp} = 1.4 \times 10^{-8}$.

2. What is the lodide concentration, [I⁻], when Pbl₂ is dissolved in water?

(A) $3.0x10^{-3}$ M (B) $1.2x10^{-4}$ M (C) $4.8x10^{-3}$ M (D) $1.5x10^{-3}$ M

- 3. What is the solubility of Pbl₂(s) in a 0.01 M solution of the strong electrolyte, Pb(NO₃)₂(aq)?
 - (A) 1.2x10⁻³ M (B) 5.9x10⁻⁴ M (C) 1.2x10⁻² M (D) 7.3x10⁻⁸ M
- 4. The solubility products of two sparingly soluble Bromide (Br⁻) salts are: AgBr - $K_{sp} = 5.4 \times 10^{-13}$, HgBr₂ - $K_{sp} = 6.2 \times 10^{-20}$.

Consider a solution which initially contains 5.0×10^{-5} M Ag⁺(aq) and 4.0×10^{-5} M Hg²⁺(aq). KBr (a strong electrolyte) is added until [Br⁻] = 5.0×10^{-8} M. Which of the above salts will form any solid precipitate?

- (A) AgBr only (B) HgBr₂ only (C) Both AgBr and HgBr₂
- (D) Neither AgBr nor HgBr₂
- 5. Which of the following statements is/are correct?
 - (1) The entropy change on condensing a gas is negative
 - (2) The entropy usually decreases when a gas is dissolved in a liquid
 - (3) The entropy of $CaCO_3(s)$ is higher than the entropy of CaO(s)
 - (4) The entropy generally decreases when a solid dissolves in a liquid

(A) 2 & 3 & 4 (B) 1 & 3 (C) 1 & 2 & 3 (D) 1 & 2 & 4

- 6. The normal melting point of toluene is -95 °C. The Enthalpy of Fusion of toluene is 6.6 kJ/mol. What is the entropy change of the **<u>surroundings</u>** when one mole of liquid toluene crystallizes to solid toluene at -95 °C?
 - (A) -48.3 J/mol-K (B) +37 J/mol-K (C) +69 J/mol-K (D) -37 J/mol-K

Version A

- 7. Consider the reaction: $2 Ca(s) + O_2(g) \rightarrow 2 MgO(s)$, $\Delta H^o < 0$. This reaction is:
 - (A) Reactant Favored at all temperatures
 - (B) Product Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature

For #8 - #9: Consider the reaction: $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$ at 25 °C

		SO ₂ (g)	SO₃(g)	O ₂ (g)		
Sm°(25 °C)		248 J/mol-K	257 J/mol-K	205 J/mol-K		
∆ G f ^o (2	25 °C)	-297 kJ/mol	-396 kJ/mol			
8.	What is	What is ΔG° for the above reaction [at 25 °C] ?				
	(A) +19	98 kJ (E	3) +99 kJ	(C) -198 kJ		
	(D) Ins	ufficient data is availabl	e			
9.	What is ΔH° for the above reaction [at 25 °C]?					
	(A) -14	2 kJ (B)+254 kJ	(C) +142 kJ		
	(D) Insufficient data is available					
10. For the hypothetical reaction, $A \rightleftharpoons B$, $\Delta H^{\circ} = +50$ kJ/mol (independent of temperature). The equilibrium constant for the reaction at 400 °C is 1.0x10 ⁻⁸ . What is the entropy change, ΔS° for this reaction?						

- (A) -28 J/K (B) +79 J/K (C) -42 J/K (D) -79 J/K
- 11. The reaction $A \rightarrow B$ is **exergonic** at 25 °C and the enthalpy change is +45 kJ. What can be concluded about the entropy change for this reaction?

(A) ∆S < -70 J/K	(B) ∆S > +150 J/K
(C) ∆S < -150 J/K	(C) $\Delta S = \frac{\Delta H}{T}$

12. For the <u>endergonic</u> reaction, $C \rightarrow D$, $\Delta S = +50 \text{ J/K}$ For this reaction,

(A) ∆G>0 & ∆H>0	(B) ∆G>0 & ∆H<0
(C) ∆G<0 & ∆H>0	(D) ∆G<0 & ∆H<0

13. Consider the reaction, 2 HI(g) \rightleftharpoons H₂(g) + I₂(s) at 25 °C. The Gibbs Free Energy of Formation of HI(g) is +1.70 kJ/mol. Therefore, the equilibrium constant for the above reaction at 25 °C is approximately:

(A) 0.25 (B) 2.0 (C) 3.9	() 0.25	(B) 2.0	(C) 3.9	(D) 2.4
--------------------------	---------	---------	---------	---------

Version A

- 14. For the reaction, $2 C_2H_2(g) + 4 H_2(g) \rightarrow 2 C_2H_6(g)$, $\Delta S^\circ = -470 \text{ J/K}$ and $\Delta H^\circ = -620 \text{ kJ}$. What is the entropy change of the **system**, ΔS_{sys} , for the related reaction, $C_2H_6(g) \rightarrow C_2H_2(g) + 2 H_2(g)$ at 25 °C?
 - (A) +235 J/K (B) +1040 J/K (C) +470 J/K (D) -1040 J/K

For #15 - #16: The Enthalpy of Fusion of $I_2(sol)$ is 7.80 kJ/mol. The Entropy of Fusion of $I_2(sol)$ is 19.6 J/mol-K.

- 15. The Entropy change of the universe, ΔS_{univ} , when one mole of I₂(liq) crystallizes to I₂(sol) at 80 °C is approximately:
 - (A) -2.5 J/mol-K (B) +7.7 J/mol-K (C) +2.5 J/mol-K
 - (D) None of the above
- 16. The Gibbs Energy Change, ΔG° , when 1 mole of $I_2(Iiq)$ crystallizes to $I_2(sol)$ at 150 °C is approximately:
 - (A) -0.5 kJ/mol (B) -4.9 kJ/mol (C) +4.9 kJ/mol (D) +0.5 kJ/mol
- 17. In class we discussed the transformation of a protein (e.g. Ribonucleus) between the Native and Random Coil forms with variation in temperature. Consider a hypothetical protein with two native forms, α and β . For the transition from the

 α to the β structure, $\alpha \rightarrow \beta$, the enthalpy and entropy changes are: $\Delta H^{\circ} = -140 \text{ kJ/mol}$ and $\Delta S^{\circ} = -420 \text{ J/mol-K}$. For this protein, the _____ form is the more stable one at all temperatures **above** _____ °C.

- (A) α , 60 °C (B) α , 333 °C (C) β , 47 °C (D) β , 60 °C
- 18. In class, we discussed the thermodynamics involved in Base Pairing in the formation of Doubly-Coiled DNA from the individual DNA strands. Consider the denaturation of a DNA double coil. This involves the breaking of base pairs such as Cytosine-Guanine (C-G). For the **breaking** of one of these base pairs, i.e. C-G → C + G, the process is _____ by ΔH° and _____ by ΔS°.
 - (A) favored, favored (B) favored, disfavored
 - (C) disfavored, favored (D) disfavored, disfavored
- 19. Regarding the following reaction, which of the statements below is/are correct?

 $Fe_2S_3(s) + 3 GeS(g) \rightarrow 2 Fe + 3 GeS_2(g)$

(1) Fe₂S₃ is the oxidizing agent
(3) 3 electrons are transfered(2) GeS₂ is oxidized
(4) GeS is reduced(A) 2 & 4(B) 1 & 3(C) 1 & 2 & 3(D) 1 only

Version A

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

- (14) 1. For the reaction, $2 \text{ NH}_3(g) \rightleftharpoons N_2(g) + 3 \text{ H}_2(g)$, $\Delta \text{H}^\circ = +92 \text{ kJ}$ and $\Delta S^\circ = +360 \text{ J/K}$.
 - (6) (a) Calculate the equibrium constant, K, for this reaction at 50 °C, in kJ.
 - (4) (b) Calculate the value of ΔG for this reaction at 50 °C when the pressures are: P(N₂) = P(H₂) = 15.0 bar, P(NH₃) = 0.10 bar.
 - (4) (c) Calculate the temperature, in °C, at which reactants and products are in equilibrium under standard conditions. Is the reaction Reactant favored or Product favored at temperatures higher than this.
- (10) 2. Balance the following oxidation-reduction reaction in **aqueous Basic** solution.

 $Mo_2O_7^{2-}$ + $SO_2 \rightarrow Mo^{3+}$ + SO_4^{2-}

CHEM 1423 - Exam 4 - April 20, 2017 - Version B

Name

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1 - #2: consider the slightly soluble compound, $Pbl_2(s)$. The solubility product (aka solubility constant) is $K_{sp} = 1.4 \times 10^{-8}$.

- 1. What is the lodide concentration, [I], when Pbl2 is dissolved in water?
 - (A) 4.8×10^{-3} M (B) 1.2×10^{-4} M (C) 3.0×10^{-3} M (D) 1.5×10^{-3} M
- 2. What is the solubility of Pbl₂(s) in a 0.01 M solution of the strong electrolyte, Pb(NO₃)₂(aq)?

(A) 1.2x10⁻³ M (B) 7.3x10⁻⁸ M (C) 1.2x10⁻² M (D) 5.9x10⁻⁴ M

3. The solubility of lead (II) arsenate, Pb₃(AsO₄)₂, in pure water is 3.3x10⁻⁸ M. The solubility product, K_{sp}, of lead (II) arsenate is approximately:

(A) 4.2x10⁻³⁶ (B) 3.9x10⁻³⁸ (C) 2.8x10⁻³⁶ (D) 1.4x10⁻³⁶

4. The solubility products of two sparingly soluble Bromide (Br⁻) salts are: AgBr - $K_{sp} = 5.4 \times 10^{-13}$, HgBr₂ - $K_{sp} = 6.2 \times 10^{-20}$.

Consider a solution which initially contains 5.0×10^{-5} M Ag⁺(aq) and 4.0×10^{-5} M Hg²⁺(aq). KBr (a strong electrolyte) is added until [Br⁻] = 5.0×10^{-8} M. Which of the above salts will form any solid precipitate?

- (A) AgBr only (B) HgBr₂ only (C) Neither AgBr and HgBr₂
- (D) Both AgBr and HgBr₂
- 5. The normal melting point of toluene is -95 °C. The Enthalpy of Fusion of toluene is 6.6 kJ/mol. What is the entropy change of the <u>surroundings</u> when one mole of liquid toluene crystallizes to solid toluene at -95 °C?
 - (A) -48.3 J/mol-K (B) +37 J/mol-K (C) +69 J/mol-K (D) -37 J/mol-K
- 6. Which of the following statements is/are correct?
 - (1) The entropy change on condensing a gas is negative
 - (2) The entropy usually decreases when a gas is dissolved in a liquid
 - (3) The entropy of $CaCO_3(s)$ is higher than the entropy of CaO(s)
 - (4) The entropy generally decreases when a solid dissolves in a liquid
 - (A) 2 & 3 & 4 (B) 1 & 3 (C) 1 & 2 & 3 (D) 1 & 2 & 4

Version B

For #7 - #8: Consider the reaction: $2 \text{ SO}_3(g) \rightarrow 2 \text{ SO}_2(g) + O_2(g)$ at 25 °C							
		SO ₂ (g)		SO₃(g)		O ₂ (g)	
S _m °(25 °C)		248 J/mol-K		257 J/mol-	K	205 J/mc	ol-K
∆Gf ^o (25 °C)		-297 kJ/mol		-396 kJ/ma	bl		
7.	7. What is ΔG° for the above reaction [at 25			ion [at 25 °C	?]?		
	(A) -19	8 kJ	(B)	+99 kJ		(C) +19	8 kJ
(D) Insufficient data is available							
8.	What is	What is ΔH° for the above reaction [at 25 °C]?					
	(A) +25	54 kJ	(B))-142 kJ		(C) +142	2 kJ
(D) Insufficient data is available)			
9.	Conside	er the reaction	n: 2 Ca(s) ·	+ O ₂ (g) \rightarrow 2	MgO(s),	∆H° < 0.	This reaction is:
	(A) Reactant Favored at all temperatures						
	(B) Product Favored at all temperatures						
	(C) Product Favored at high temperature						
	(D) Pro	oduct Favored	d at low tem	perature			
10.	of Form) is +1.70 k	J/mol. Ther			bbs Free Energy n constant for the
	(A) 0.2	5	(B) 3.9	(C) 2.4		(D) 2.0
11. For the <u>endergonic</u> reaction, $C \rightarrow D$, $\Delta S = +50$ J/K For this reaction,					action,		
	(A) ∆G<0 & ∆H<0		((B) ∆G>0 & ∆H<0			
	(C) ∆G<0 & ∆H>0				(D) ∆G>0 & ∆H>0		
12.		action $A \rightarrow B$	-				ange is +45 kJ. ion?
	(A) ∆S	> +150 J/K		. ,	∆S < -1		
	(C) ∆S	< -70 J/K		(C)	$\Delta S = \frac{\Delta F}{T}$	<u>+</u>	

13. For the hypothetical reaction, A = B, $\Delta H^{\circ} = +50$ kJ/mol (independent of temperature). The equilibrium constant for the reaction at 400 °C is 1.0x10⁻⁸. What is the entropy change, ΔS° for this reaction?

(B) +79 J/K (C) -42 J/K (D) -79 J/K (A) -28 J/K

Version **B**

For #15 - #16: The Enthalpy of Fusion of $I_2(sol)$ is 7.80 kJ/mol. The Entropy of Fusion of $I_2(sol)$ is 19.6 J/mol-K.

- 15. The Entropy change of the universe, ΔS_{univ} , when one mole of I₂(liq) crystallizes to I₂(sol) at 80 °C is approximately:
 - (A) +2.5 J/mol-K (B) +7.7 J/mol-K (C) -2.5 J/mol-K
 - (D) None of the above
- 16. The Gibbs Energy Change, ΔG° , when 1 mole of I₂(liq) crystallizes to I₂(sol) at 150 °C is approximately:
 - (A) -0.5 kJ/mol (B) -4.9 kJ/mol (C) +0.5 kJ/mol (D) +4.9 kJ/mol
- 14. For the reaction, $2 C_2H_2(g) + 4 H_2(g) \rightarrow 2 C_2H_6(g)$, $\Delta S^\circ = -470 \text{ J/K}$ and $\Delta H^\circ = -620 \text{ kJ}$. What is the entropy change of the **system**, ΔS_{sys} , for the related reaction, $C_2H_6(g) \rightarrow C_2H_2(g) + 2 H_2(g)$ at 25 °C?
 - (A) +1040 J/K (B) +235 J/K (C) +470 J/K (D) -1040 J/K

18. In class, we discussed the thermodynamics involved in Base Pairing in the formation of Doubly-Coiled DNA from the individual DNA strands. Consider the denaturation of a DNA double coil. This involves the breaking of base pairs such as Cytosine-Guanine (C-G). For the **breaking** of one of these base pairs, i.e. $C-G \rightarrow C + G$, the process is _____ by ΔH° and _____ by ΔS° .

- (A) favored, favored (B) disfavored, favored
- (C) favored, disfavored (D) disfavored, disfavored
- 17. In class we discussed the transformation of a protein (e.g. Ribonucleus) between the Native and Random Coil forms with variation in temperature. Consider a hypothetical protein with two native forms, α and β . For the transition from the α to the β structure, $\alpha \rightarrow \beta$, the enthalpy and entropy changes are: $\Delta H^{\circ} = -140 \text{ kJ/mol}$ and $\Delta S^{\circ} = -420 \text{ J/mol-K}$. For this protein, the ______ form is the more stable one at all temperatures **above** ______ °C.
 - (A) β , 60 °C (B) α , 333 °C (C) β , 47 °C (D) α , 60 °C
- 19. Regarding the following reaction, which of the statements below is/are correct?

 $Fe_2S_3(s) + 3 GeS(g) \rightarrow 2 Fe + 3 GeS_2(g)$

(1) Fe2S3 is the oxidizing agent(2) GeS2 is oxidized(3) 3 electrons are transfered(4) GeS is reduced(A) 2 & 4(B) 1 & 2 & 3(C) 1 only(D) 1 & 3

Version B

The Gas Constant is: $R = 8.31 \text{ J/mol-K} = 8.31 \text{ x}10^{-3} \text{ kJ/mol-K}$

- (14) 1. For the reaction, $2 \text{ NH}_3(g) \rightleftharpoons N_2(g) + 3 \text{ H}_2(g)$, $\Delta \text{H}^\circ = +92 \text{ kJ}$ and $\Delta S^\circ = +360 \text{ J/K}$.
 - (6) (a) Calculate the equilibrium constant, K, for this reaction at 60 °C, in kJ.
 - (4) (b) Calculate the value of ΔG for this reaction at 60 °C when the pressures are: P(N₂) = P(H₂) = 12.0 bar, P(NH₃) = 0.10 bar.
 - (4) (c) Calculate the temperature, in °C, at which reactants and products are in equilibrium under standard conditions. Is the reaction **Reactant favored** or **Product favored** at temperatures higher than this.
- (10) 2. Balance the following oxidation-reduction reaction in **aqueous Basic** solution.

 $Mo_2O_7^{2-}$ + $SO_2 \rightarrow Mo^{3+}$ + SO_4^{2-}