Verson A

CHEM 142	3 - Final	Exam –	May 1	12, 2015
-----------------	-----------	--------	-------	----------

Name_Salabam

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting.

Problem (4 pts): A concentration cell is prepared with 0.60 M Calcium Nitrate, Ca(NO₃)₂, in the reference compartment (cathode) and a saturated solution of Calcium Phosphate, Ca₃(PO₄)₂, in the sample compartment (anode).

The cell reaction can be written as: Ca(s)|Ca²⁺(xx M)||Ca²⁺(0.60 M)|Ca(s)

The measured cell voltage is +0.161 V. Calculate the Solubility Product, K_{sp}, of Ca₃(PO₄)₂

 $\frac{1}{\sqrt{\frac{xx}{0.60}}} = \frac{1}{\sqrt{\frac{xx}{0.60}}} = \frac{1}{\sqrt{\frac{xx}{0.60}}$

(2) Calentato K_{SP} $C_{a3}(PO_{4})_{2} \rightarrow 3 \frac{20}{6} \times PO_{4}^{3}$ $5 = 2.18 \times 10^{-7}$ $5 = 2.28 \times 10^{-7}$ $5 = 2.28 \times 10^{-7}$ $K_{ap} = (2.18 \times 10^{-7})^{2} = (2.18 \times 10^{-7})^{3} (148 \times 10^{-7})$ $= 2.28 \times 10^{-79} \approx 2.8 \times 10^{-79}$

Conversions: 1 atm. = 760 torr

Constants: $R = 0.082 \text{ L-atm/mol} \cdot \text{K}$

R = 8.31 J/mol·K

 $R = 8.31x10^{-3} \text{ kJ/mol} \cdot \text{K}$

 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

F = 96,500 Coul/mol e⁻

 $c = 3.00x10^8$ m/s (speed of light)

Molar Masses: Given with each question: [M=xx]

18 A	4.003 10 Ne	0.18 18 9.95	3.80 3.80	6 2	3 88 53	(222				
_					·····	~~~	1997	۶	V b 0.573.0	102 No (259) bns. hq
		19.00 17.35.45		<u></u>			ıst 30,	<u> </u>		101 Md (258)
	ē≹ ∞O	16.00 16 32.07	% % 88 88 88 88 88 88 88 88 88 88 88 88 88	۾ ۾	P 84	(203)	, Augu			2 2 1
	Z \ \ \ \ Z	15 15 30.97	AS 492	Sp	27.8 19	0.60	зепеvа	<u>; </u>		100 Fm (257) 997 Educal
ပ္ပ		12.01 14 14 28.09					Approved by the I.U.P.A.C. Council in Geneva, August 30, 1997	:	も 164.9	97 98 99 100 101 102 3K Cf Es Fm Md No (251) (251) (252) (257) (258) (259) (259) (259) (259)
ELEMENTS	·			<u>:</u>			S. Cou	Ę	0.5 62.5	98 Cf (251) He Supte
Σ	ದ ≣್ರಾ	10.81 AI 26.98					U.P.A.			97 BK (247) (7
		24 ⊞	85.38 85.38	နည်	무 문 문 문	200.6	r the t.			
빞		1			79 79 Au		ld bevo	13	2 G (2)	C 347)
PERIODIC TABLE OF THE					78 78		Appr	18	5 <u>円</u> 6.25	95 (243)
Ш							- - -		52 3m 50.4	94 Pu (244)
Ä		6 Allia						;-		93 Np 237.0 (
1 √		∞└	6 T 8	4₽	101.1 8,0	190.2	708 (265)			
DiC		,			(98)					38.0 238.0
잁	Atomic Number Symbol Atomic Mass					 -			₽.04 10.9	Ac Th Pa 227.0 232.0 231.0
H	mic N mlc M			<u> </u>			Sg (263)	Selfes	8 6 5	8 .5 2.8
_		S VB	8> g	4 Z	92.91 73	180.9	105 Db (262)	anlde	O 4	2 0 0 B
	кеу Т 1.008	4 <u>8</u>	25 1		91.22 72 #	178.5	104 (261)	Lant	13 E. 57	227 Actin
	<u> </u>						(% C 3	/_		
		9.012 12 Mg 24.30								
-≤	- エ 00 - コ	6.941 11 23.00	5× 5	33 8	85.47 55	132.9	87 F (223)			
	- 0	69	4	ın	9		٠ ;			

ELECTROCHEMISTRY INFORMATION

Table 1: Standard Reduction Potentials

Reduction Half-Reactions E° (V)

	_ (- ,
$F_2 + 2 e^- \rightarrow 2 F^-$	+2.87
$Au^{3+} + 3e^- \rightarrow Au$	+1.50
$Cl_2 + 2 e^- \rightarrow 2 Cl^-$	+1.36
$Br_2 + 2 e^- \rightarrow 2 Br$	+1.07
$Hg^{2+} + 2 e^{-} \rightarrow Hg$	+0.86
$Ag^+ + 1 e^- \rightarrow Ag$	+0.80
$l_2 + 2 e^- \rightarrow 2 l^-$	+0.54
$Cu^{2+} + 2 e^- \rightarrow Cu$	+0.34
$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.04
$Sn^{2+} + 2 e^- \rightarrow Sn$	-0.14
$Ni^{2+} + 2 e^- \rightarrow Ni$	-0.25
$Zn^{2+} + 2 e^- \rightarrow Zn$	-0.76
$Mn^{2+} + 2 e^- \rightarrow Mn$	-1.18
$Al^{3+} + 3 e^{-} \rightarrow Al$	-1.66
$Mg^{2+} + 2 e^{-} \rightarrow Mg$	-2.37
$K^+ + 1 e^- \rightarrow K$	-2.93
$Li^+ + 1 e^- \rightarrow Li$	-3.05

Table 2: Some Reduction and Oxidation Potentials in Aqueous Solution

Reduction Potentials

Oxidation Potentials

$$2 H_2O \rightarrow O_2 + 4 H^+ + 4 e^ E^o_{oxid} = -1.23 V$$

 $2 I^- \rightarrow I_2 + 2 e^ E^o_{oxid} = -0.54 V$
 $2 Br \rightarrow Br_2 + 2 e^ E^o_{oxid} = -1.07 V$
 $2 F^- \rightarrow F_2 + 2 e^ E^o_{oxid} = -2.87 V$

Some Electrochemical Equations

F = 96,500 C/mol e⁻ (Coulombs per mole of electrons)

$$E = E^{\circ} - \frac{0.0592}{n} \cdot \log(Q)$$

(56) MULTIPLE CHOICE (Mark the one correct answer to each question on your scantron)

> Turn in: (a) Your scantron with your name and answers (there is no need to bubble in your ID.

(b) The cover sheet with your Electrochemistry Problem + four (4) digit number if you would like your results posted on the course web site

nu	mper ir you wou	ia like your results	s postea on the cour	se web site.
4 [ooints, yielding a	total of 60 points	rth 1 point. The probon the test. Your sony further analysis.	
1.	7.1		$3A + B \rightarrow 2C$. If the rarate" of the reaction?	ite of change of [A] is
((A) +0.20 M hr ¹		(B) -0.40 M hr ¹	
	(C) -0.20 M hr ^r		(D) +0.40 M hr ⁻¹	
2.	measured. It is for the B concentrate to the first exper rate increases by	ound that if the initiation the same, the raiment). If the conce	ate increases by a fac entrations of both A an	sed is tripled, keeping tor of nine (9) (relative
	(A) $k[A]^2[B]^2$	(B) k[A][B] ³	(C) k[A] ² [B] ³	(D) k[A] ³ [B] ²
3.	When the initial	concentration of A is ntration of A is 0.20	s 0.60 M, the initial rat	o [A]; i.e. Rate = k[A] ⁿ . te is 0.50 Ms ⁻¹ . When 50 Ms ⁻¹ . The order of
((A) -2	(B) -1	(C) +1	(D) +2
4.	[A]? When the i		of A is 0.80 M, the init	order with respect to tial rate is 0.45 Ms ⁻¹ .
	(A) 1.4 M ⁻³ s ⁻¹	(B) 0.73 M ⁻³ s ⁻¹	(C) $0.91 \text{ M}^{-3}\text{s}^{-1}$ ((I	D) 1.1 M ⁻³ s ⁻¹
5.			oducts, the rate const what is the approxima	ant is 0.025 s ⁻¹ . If the te concentration of A
	(A) 0.40 M	(B) 0.30 M	(C) 0.26 M	(D) 0.61 M

6.		Products, when the initial concentration of A entration to decrease to 0.30 M. The rate nately:
	(A) 0.027 M ⁻¹ s ⁻¹ (B) 0.056 M ⁻¹	s ⁻¹ (C) 0.015 M ⁻¹ s ⁻¹ (D) 0.082 M ⁻¹ s ⁻¹
7.	For the reaction, 2 NO(g) + O ₂ (g) \rightarrow	2 NO ₂ (g), the reaction mechanism is:
	$2 \text{ NO} \rightleftarrows \text{N}_2\text{O}_2$	ast Equilibrium (N ₂ O ₂) is an intermediate
	$N_2O_2 + O_2 \rightarrow 2 NO_2$ S	low rate determining step
	The overall rate equation for this rea	action is:
	(A) Rate = $k'[NO]^2/[O_2]$	(B) Rate = $k'[O_2][2NO]$
	(C) Rate = $k'[O_2][NO]$	(D) Rate = $k'[O_2][NO]^2$
For	or #8-#9: Consider the gas phase equ	uilibrium, 2 POBr ₃ (g) \rightarrow 2 PBr ₃ (g) + O ₂ (g).
8.	For the above reaction, if the volum and K _c will	e is decreased , the ratio [PBr ₃]/[POBr ₃] will
	(A) increase , increase	(B) increase , remain constant
	(C) decrease, remain constant	(D) decrease, decrease
9.		added to the mixture at constant pressure
	(A) increase , increase	(B) increase , remain constant
	(C) decrease , remain constant	(D) remain constant , remain constant
10.	container with A at a concentration	reaction, A(g) \rightleftharpoons 2 B(g). If one initially fills a of 2.0 M, and then allows it to come to ibrium concentration of A is 1.6 M. Therefore it, K_c is approximately:
1	(A) 0.40 (B) 0.50	(C) 0.10 (D) 0.67
11.	1. Consider the reaction: $2HBr(g) \stackrel{k}{\longleftarrow}$ is $K_c = 15.0$ at 100 °C. The Enthalp $\Delta H^o = +70$. kJ/mol. What is the app	
	(A) 33. (B) 0.030	(C) 490 (D) 0.45

12.	The gas phase	e molecule	e, A, dissocia	ates acc	cording to the	e equil	ibrium,	
	A(g) ⇒ 3 B(g) initial concentration dissociates]	ation of 2	.0 M of A in	to a flas	k, what is th	ie appr	oximate	
	(A) 0.15 M	(B) 0.2	28 M	(C) 0.	09 M	(D)	0.15 M	
13.	The concentra Approximately the solution?:							0 mL of
((A) 6.8x10 ⁴ ng		(B) 4.5	x10⁵ ng	((C) 68 r	ng	
	(D) None of the	ne above	, ,		·			
14.	When 16 gram [M=18], the description is:		•	-	-	•	-	
	(A) 3.63 M) (B)	4.17 M	(C) 4.48 M		(D) 4.63	М
15.	A sample of el (K _f = 1.86 °C/r how many mo	n). The fr les of ethy	eezing point lene glycol	of the s	solution is -3	3.6 °C.	Approxima	
	(A) 0.42 mol	(B)	1.35 mol	(C) 1.94 mol	((D) 2.76 m	nol
16.	Which of the fo	ollowing s	olutions has	the low	rest freezing	g point'	?	
	(A) 0.32 m C ₆	H ₁₂ O _{6a}		(B) 0.1	0 m Ca(NO	3)2		
	(C) 0.09 m K ₃	PO ₄		(D) 0.2	0 m NaBr			
17.	What is the ap strong electrol aqueous solut	yte, Calcii	um Phospha					
	(A) 15 torr	(B)	77 torr	(C) 0.10 torr		(D) 46 t	orr
18.	The normal bo constant is 5.0 grams of CCl ₄ unknown com) °C/m. W , the boilir	hen 60. grar ig point of th	ns of ar ie soluti	unknown c	ompou	ınd is place	ed in 750
	(A) 64 g/mol	(B)	86 g/mol	(c) 114 g/mol		(D) 153 g/	mol
19.	Approximately aqueous solut			-	-	be dis	solved in 1	5. L of
	(A) 7.5x10 ⁻² g	(B)	7.5x10 ⁻⁴ g	(C)	2.0x10 ⁻³ g		D) 3.0x10	² g)

(A) 1.6x10 ⁻⁵ (B) 6.3x10 ⁻¹⁰ (C) 1.6x10 ⁻¹⁷ (D) 4.8 21. Benzoic Acid (HBenz) has an acid dissociation constant of 1.6x10 ⁻⁹ . W	₹∨10-7
21 Benzoic Acid (HBenz) has an acid dissociation constant of 1 6v10-9 W	W10.
approximate pH a 0.20 M solution of aqueous sodium benzoate (NaBer	
(A) 11.0 (B) 9.3 (C) 4.7 (D) 3.0	
22. The weak base, aniline (Anil), has a base equilibrium constant, K _b = 4.3 What is the pH of a 0.05 M aqueous solution of anilinium chloride (Anilinium chloride)	
(A) 11.0 (B) 8.7 (C) 5.3 (D) 3.0	>
23. If added to 2 L of 0.80 M NaOH, which one of the following would form	a buffer?
(A) 2. L of 0.50 M Nitric Acid (HNO ₃)	
(B) 2. L of 0.50 M Acetic Acid (HAc)	
(C) 2. L of 1.0 M Lactic Acid (HLac)	
(D) 2. L of 1.0 M Potassium Acetate (KAc)	
For #24 - #28: Tellurous acid, H_2TeO_3 , is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$	
24. What is the pH of a 0.04 M solution of sodium tellurite, Na ₂ TeO ₃ ?	
(A) 9.45 (B) 10.15 (C) 11.25 (D) 3.85	
25. What is the pH of a solution containing 0.20 M KHTeO ₃ and 0.50 M Na ₂	₂TeO₃?
(A) 2.92 (B) 7.30 (C) 8.10 (D) 2.12	
26. What is the pH of a solution prepared by adding 0.35 mol of KOH to 2.0 L of 0.50 M H ₂ TeO ₃ ?	
(A) 7.43 (B) 2.79 (C) 2.06 (D) 2.25	>
27. What is the pH of a solution prepared by adding 2 L of 0.70 M HCl to 2 0.45 M Na ₂ TeO ₃ ?	L of
(A) 7.60 (B) 2.42 (C) 7.80 (D) 2.62	``
28. What ratio of [HTeO ₃ -]/[TeO ₃ ² -] will give a pH of 7.00	

29.		/I KOH(aq) are requ aq) solution. What		neutralize 400 mL of a he acid solution?	an
((A) 0.23 M	(B) 0.36 M	(C) 0.45 M	(D) 0.90 M	
30.	-	•	und, silver carbona	ate, Ag ₂ CO ₃ . The solu	bility
	product constant	is K_{sp} = 6.2x10 ⁻¹² .			
	What is the conc and 0.1 M K ₂ CO:		ns, [Ag+], in a solu	ution containing Ag₂CC	Эз
	(A) 1.6x10 ⁻⁵ M	(B) 7.9x10 ⁻⁶ M	(C) 3.9x10 ⁻⁶ M	(D) 2.5x10 ⁻⁶ M	
31.	Consider the rea	ction: 2 NO ₂ (g) \rightarrow N	$N_2(g) + 2 O_2(g)$, Δ	.H° < 0. This reaction	is:
	(A) Reactant Fa	vored at all tempera	atures		
		ored at all temperat			
	` '	ored at low tempera			
	(D) Product Fav	ored at high tempe	ature		
32.		al reaction, $A \rightleftharpoons B$, Δ 0x10 ⁻¹¹ at 25 °C. Δ		e equilibrium constant is approximately:	for
	(A) -470 J/K	(B) -67 J/K	(C) +470 J/K	(D) +67 J/K	
	he entropy char	ge of the surround	lings, $\Delta S_{ ext{surr}}$, for th), is +30.7 kJ/mol. Whe condensation of 0.5	
	•	at the boiling point, (B) -192 J/K	(C) -43.5 J/K) (D) +87 J/K	
	(A) -87. J/K	(D) -192 J/K	(C) -43.3 J/K	(b) 101 3/K	
34.	is the approxima		llibrium Constant f	Go = -236 kJ at 25°C. \ For the related reactio	
	(A) 2.0x10 ⁻²¹	(B) 2.4x	10+41 (C) 2.0x10 ⁻⁴²	
	(D) None of the	above			
35.				8 kJ and ∆S° = +85 J/k ⊵low °C (Cels	
	(A) Product, 29	<u>2 °</u> C	(B) Product, 565	5 °C	
((C) Reactant, 2	.92 °C	(D) Reactant, 56	85 °C	

at 2	.40 °C. What i			ium constant, $K = 220$, C when $P(N_2) = P(H_2) =$
(A)	-33.4 kJ	(B) -7.4 kJ	(C) + 10.4 kJ	(D) -56.4 kJ
	· ·	B, is exergonic at 2 cluded about the Entl		opy change is -95 J/K. is reaction?
` '	$\Delta H < 45.6 \text{ kJ}$ $\Delta H \text{ cannot be}$	(B) ΔH <		(C) ∆H > +28.3 kJ of ∆G
38. Reg	garding the foll	owing reaction, whic	h of the statements	s below is/are correct?
		O ₃ (s) + 3 CO(g) → exidizing agent e transfered (B) 1 & 3 & 4		ed ed (D) 2 & 3
	the electroche ements is/are	emical cell given by C correct?	Cu Cu²+ Au³+ Au, w	which of the following
	Electrons flow circuit The anode rea	action is $Cu \rightarrow Cu^{2+}$ s are separated by a	de to the Cu electro + 2 e ⁻	ode through an external NO ₃ - ions flow towards
(A)	1 & 2 & 3	(B) 1 & 2 & 4	(C) 1 & 3	(D) 2 & 3 & 4
	- #46: Use T of the test.	able 1 (Standard Re	eduction Potentia	ls), as necessary, near
40. Wh	ich of the follo	wing reactions are re	actant favored?	
Red (1)	Hg ²⁺ + 2 Cl ⁻ -	\rightarrow Hg + Cl ₂ (2)	$\int 2 Ag^+ + 2 I^- \rightarrow 2 I$	Ag + 2 l ₂
SKIP this Question (A)	Hg ²⁺ + 2 Fe ²⁺	\rightarrow Hg + 2 Fe ³⁺ (4)	χ Cu ²⁺ + 2 Ag \rightarrow 2	Ag+ + Cu
(A)	2 & 3	(B) 1 & 3 & 4	(C) 3 only	(D) 1 & 4
		ction, 2 K $^+$ + Cd \rightarrow 2 What is the reduction	· · · · · · · · · · · · · · · · · · ·	•
(A)	-0.40	(B) -5.46 V	(C) -3.33 V	(D) +0.40 V
	at is the stand $^{+} + 2 ^{-} \rightarrow Ni^{-}$		gy change for the	electrochemical reaction
(A)	-56 kJ	(B) +76 kJ	(C) +56 kJ	(D) +152 kJ

43. For the redox rea E° _{cell} = -0.48 V. V	action, 2 Al ³⁺ + 3 Mn What is the equilibri		
(A) 4.7x10 ⁻²⁵	(B) 2.2x10 ⁻⁴⁹	(C) 4.5x10 ⁺⁴⁸	(D) 7.8x10 ⁻⁹
this reaction, E°c	•	s) Ag⁺(0.002 M)Ì A is the cell potential	\u ³⁺ (3.00 M) Au(s) . For
(A) +0.36 V	(B) +1.21 V	(C) +0.53 V	(D) +0.87 V
a concentration of (the cathode) and in the sample ce	cell with 0.30 M lead d a sample of water	I(II) nitrate, Pb(NO: with an unknown	ter was determined using (3)2, in the reference cell concentration of Pb ²⁺ (xx) Pb ²⁺ (0.20 M) Pb(s).
•	oncentration of lead		neasured to be +0.140 V. nilligrams per Liter
(A) 1.2 mg/L	(B) 550 mg/L	(C) 3.9 mg/L	(D) 3.9x10 ⁻³ mg/L
for this reaction i Based upon elec	s given by: O ₂ + 2 I ctrochemical conside corrode (i.e. undergo	$H_2O + 4 e^- \rightarrow 4 OH$ erations, which of t	and the reduction potetial $F_{red}^{o}(O_2) = +0.40 \text{ V}$ he following metals would presence of O_2 and
(A) Cu only	(B) Hg & Cu	(C) Sn & Cu	(D) Ag & Hg
For #47 - #48: Use Aqueous Solution)			ation Potentials in
	Fluoride, ZnF₂(aq) will be the principal		ctrolysis cell, and a voltage

ge

(A) Zn, F_2

- (B) Zn, O₂, H⁺
- (C) F_2 , H_2 , OH^-

(C) H_2 , OH^- , O_2 , H^+

48. If aqueous Aluminum Iodide, AlI₃(aq) is placed in an electrolysis cell, and a voltage is applied, what will be the principal products of the electrolysis?

(C) I₂ , H₂ , OH

- (B) Al, O_2 , H^{\dagger}
- (C) H_2 , OH^- , O_2 , H^+

49.	. Approximately how long would it take to electroplate a metal surface with 0.15 g
•	of Nickel [M=58.7] metal from a Ni(NO ₃) ₂ (aq) solution with a current of 150 mA
	(milliAmps)?

54.8 min)

(B) 157 min

(C) 27.5 min

(D) 32.9 min

50. A total of 850 kJ of energy was required to plate out Al(s) [M=27.] by electrolysis of a Al(NO₃)₃(aq) solution. The voltage was 8. Volts. Approximately how many grams of Al(s) were plated out by electrolysis?

(A) 89.2 g

(B) 9.9 a

(C) 5.4 q

(D) 29.7 g

51. Consider the nuclear reaction, ${}^{252}_{98}Cf + X \rightarrow 3\,{}^1_0n + {}^{259}_{103}Lr$. What is X in this equation?

(A) ⁴₂He

(B) ⁹₅B

(C) 16₈O

52. What nuclide will undergo electron capture to form Pt-195?

(A) Ir-196

(B) Ir-195

(D) Pt-196

53. Which of the following decay paths is the most likely one for Rn-222?

SKIP this Question

(A)
$$_{86}^{222} Ra \rightarrow_{+1}^{0} e +_{85}^{222} At$$

(C) $_{86}^{222} Ra \rightarrow_{-1}^{0} e +_{87}^{222} Fr$

$$(B)$$
 $_{86}^{222} Ra \rightarrow_{2}^{4} He +_{84}^{218} Po$

(C)
$${}^{222}_{86}Ra \rightarrow {}^{0}_{-1}e + {}^{222}_{87}Fr$$

(D)
$$_{86}^{222} Ra +_{-1}^{0} e \rightarrow_{85}^{222} At$$

54. Which of the following is/are likely decay paths for Mg-22. Stable isotopes in this range typically have N/Z = 1.05.

$$(2)^{22}_{12}Mg \rightarrow {}^{0}_{+1}e + {}^{22}_{11}Na$$

Two more MC questions on next page.

- 55. One nuclear fusion reaction involves the reaction of a deuterium and tritium nucleus to form helium: ${}_1^2H + {}_1^3H \rightarrow {}_2^4He + {}_0^1n$. This reaction is highly exothermic because:
 - (A) The n-n repulsions in deuterium and tritium are higher than in helium
 - (B) Helium has a lower Binding Energy per nucleon than deuterium or tritium
 - (C) The p-p attractions are greater in helium than in deuterium or tritoi,
 - (D) Helium has a higher Binding Energy per nucleon than deuterium or tritium
- 56. Use the Molar Masses below to calculate the approximate Binding Energy per Nucleon (Eb/N) of Pb-208.

 $m(_1^1H) = 1.008 \text{ g/mol}$, $m(_0^1n) = 1.009 \text{ g/mol}$, $m(_{82}^{208}Pb) = 207.977 \text{ g/mol}$

(A) 1.6x10¹¹ kJ/mol

(B) 7.8x10¹¹ kJ/mol

(C) 7.8x108 kJ/mol

(D) 1.6x10¹⁴ kJ/mol

Version B

CHEM 1423 - Final Exam - May 12, 2015 ,

Name Saladun

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting.

Problem (4 pts): A concentration cell is prepared with 0.20 M Calcium Nitrate, Ca(NO₃)₂, in the reference compartment (cathode) and a saturated solution of Calcium Phosphate, Ca₃(PO₄)₂, in the sample compartment (anode).

The cell reaction can be written as: Ca(s)|Ca²⁺(xx M)||Ca²⁺(0.20 M)|Ca(s)

The measured cell voltage is +0.146 V. Calculate the Solubility Product, K_{sp}, of Ca₃(PO₄)₂

1) Calculati [6 1] = XX] = 0 - 0,0192 / 07 4X 12(xx) = -NF = -2(0,146) = -4.93 2x = 10 - 0.493 = 1.07×10 - 5617 = xx = 2.34×10 } 6) Calubte Kip/ Ca3(Aby) = 36 to 2 Pay [aV]= 35= 234×106 5 = 2 79 x10 -7 $R_{\text{sp}}^{2} = \frac{5a^{3}}{3.40} = \frac{2.34 \times 10^{2}}{3.40}$ $= \frac{3.1 \times 10^{-29}}{3.40} = \frac{3.40}{3.40}$ Spa;]=252 1.56×10

(56)	MULTIPLE CHOICE (Mark the one correct answer to each question on
	your scantron)

Turn in: (a) Your scantron with your name and answers (there is no need to bubble in your ID.

(b) The cover sheet with your Electrochemistry Problem + four (4) digit number if you would like your results posted on the course web site.

Each Multiple Choice question is worth 1 point. The problem is worth 4 points, yielding a total of 60 points on the test. Your score will be converted to a percentage prior to any further analysis.

1.	The reaction, $A \rightarrow Products$, is of order "n" with respect to [A]; i.e.	Rate = $k[A]^n$
	When the initial concentration of A is 0.60 M, the initial rate is 0.50	Ms ⁻¹ . When
	the initial concentration of A is 0.20 M, the initial rate is 4.50 Ms ⁻¹ .	The order of
	this reaction, n, is:	_

(A) +2

(B) -1

(C) +1

(D) -2

The rate law for a given reaction, A → Products, is **fourth** order with respect to [A]? When the initial concentration of A is 0.80 M, the initial rate is 0.45 Ms⁻¹. The rate constant for this reaction is approximately:

(A) 1.4 M⁻³s⁻¹

(B) 1.1 M⁻³s⁻¹

(C) 0.91 M⁻³s⁻¹

(D) 0.73 M⁻³s⁻¹

3. For the **first** order reaction, A → Products, the rate constant is 0.025 s⁻¹. If the initial concentration of A is 0.50 M, what is the approximate concentration of A after 20 s?

(A) 0.40 M

(B) 0.26 M.

(C) 0.30 M

(D) 0.61 M

4. The rate of the chemical reaction involving two substances, A and B, is measured. It is found that if the initial concentration of A used is tripled, keeping the B concentration the same, the rate increases by a factor of nine (9) (relative to the first experiment). If the concentrations of both A and B are doubled, the rate increases by a factor of thirty-two (32) (relative to the first experiment). The rate law for this reaction is: Rate =

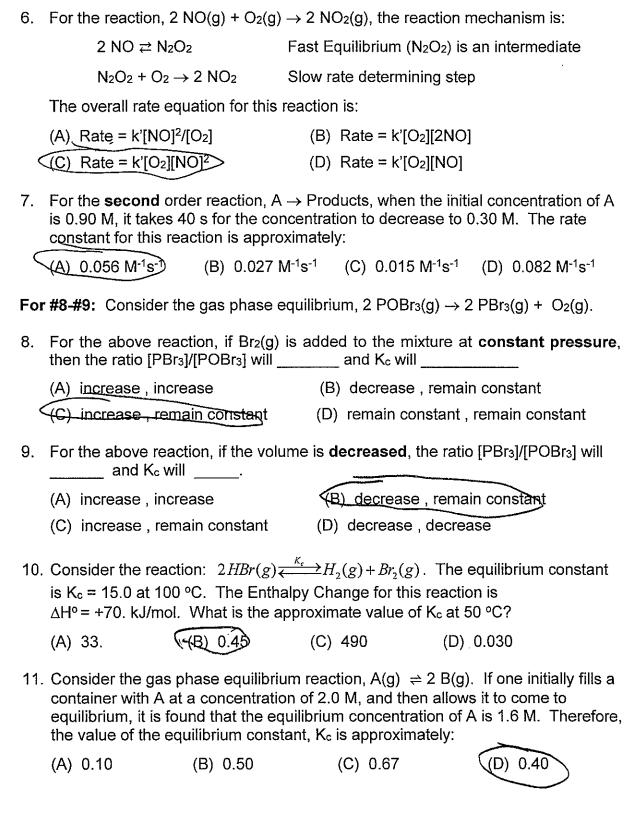
(A) $k[A]^2[B]^2$

(B) $k[A][B]^3$

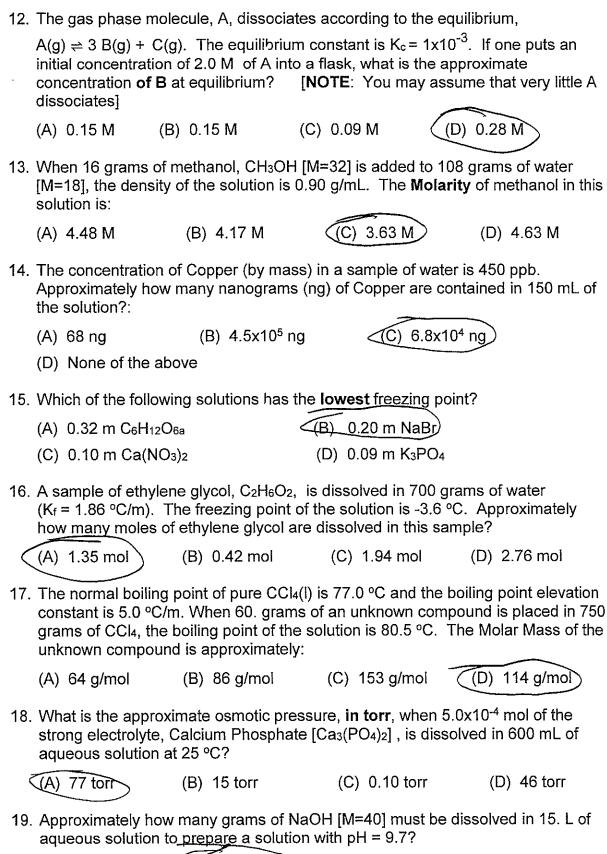
(C) $k[A]^3[B]^2$

(D) k[A]²[B]³

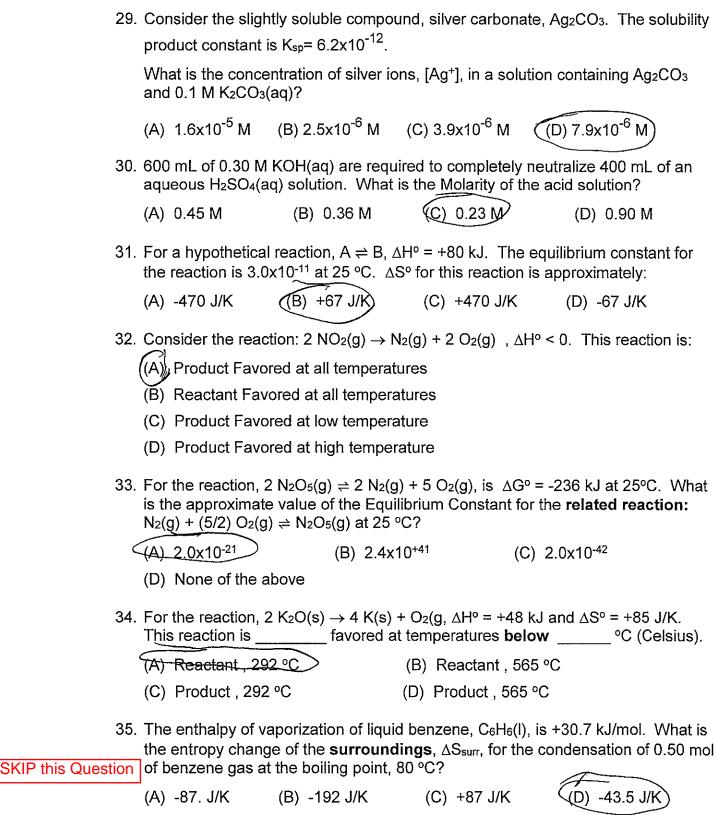
5. Consider the hypothetical reaction, $3A + B \rightarrow 2C$. If the rate of change of [A] is $\Delta[A]/dt = -0.60 \text{ M hr}^{-1}$. What is the "rate" of the reaction?


(A) -0.40 M hr^{-1}

(B) $+0.40 \text{ M hr}^{-1}$


(C) -0.20 M hrr

(D) +0.20 M hr⁻¹

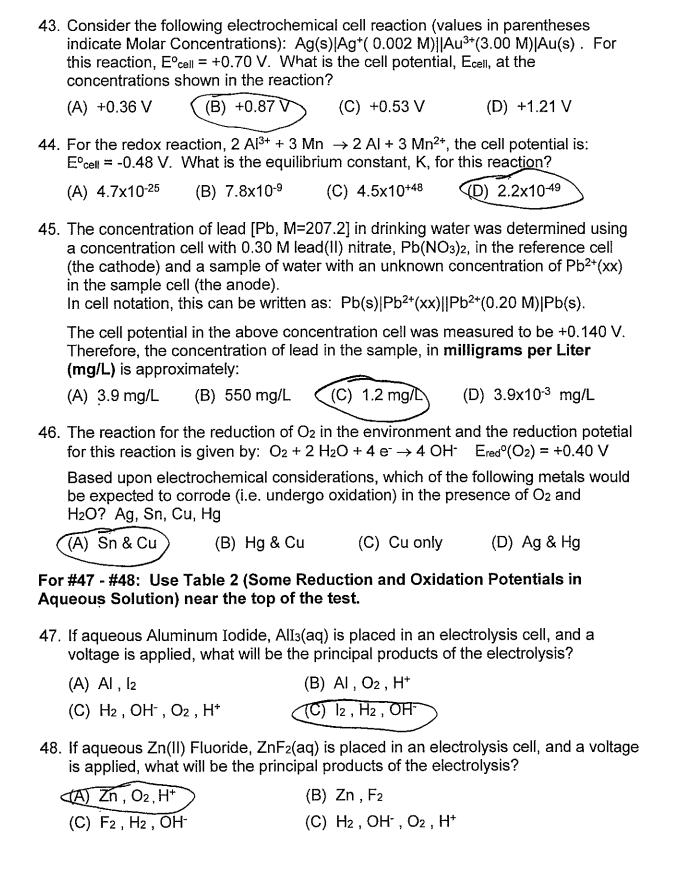

(B) 3.0×10^{-2} a)

(A) 7.5×10^{-2} g

(C) $2.0x10^{-3}$ g

(D) 7.5×10^{-4} g

20.			-	onstant, $K_b = 4.3 \times 10^{-10}$. in chloride (AnilHCl)?			
	(A) 11.0	(B) 3.0	(C) 5.3	(D) 8.7			
21.	,	•		t of 1.6x10 ⁻⁹ . What is the enzoate (NaBenz)?			
	(A) 9.3	(B) 3.0	(C) 11.0	(D) 4.7			
22.	2. The pH of a 0.10 M acetate (KAc) is 8.90 . The base equilibrium constnat, K_b of the acetate ion (Ac ⁻) is approximately:						
	(A) 1.6x10 ⁻⁵	(B) 6.3x10 ⁻¹⁰	(C) 1.6x10 ⁻¹⁷	(D) 4.8x10 ⁻⁷			
23.	If added to 2 L of	0.80 M NaOH, whi	ch one of the follow	ring would form a buffer?			
	(A) 2. L of 0.50 M	¹ Nitric Acid (HNO₃)				
((B) 2). L of 1.0 M	Lactic Acid (HLac)					
	(C) 2. L of 0.50 M	Acetic Acid (HAc)				
	(D) 2. L of 1.0 M	Potassium Acetate	e (KAc)				
For #24 - #28: Tellurous acid, H_2TeO_3 , is a diprotic acid with acid dissociation constants, K_a ' = $3.0x10^{-3}$ and K_a " = $2.0x10^{-8}$							
24.	What is the pH of	a solution containi	ng 0.20 M KHTeO₃	and 0.50 M Na₂TeO₃?			
<	(A) 8.10	(B) 7.30	(C) 2.92	(D) 2.12			
25.	What is the pH of 2.0 L of 0.50 M H	• •	d by adding 0.35 m	ol of KOH to			
	(A) 7.43	(B) 2.79	(C) 2.25	(D) 2.06			
26.	26. What is the pH of a solution prepared by adding 2 L of 0.70 M HCl to 2 L of 0.45 M Na₂TeO₃ ?						
	(A) 7.60	(B) 2.62	(C) 7.80	(D) 2.42			
27. What is the pH of a 0.04 M solution of sodium tellurite, Na ₂ TeO ₃ ?							
£ 1 .	What is the pH of	a 0.04 M solution	of sodium tellurite,	Na₂TeO₃ ?			
<	What is the pH of (A) 10.15	a 0.04 M solution (B) 9.45	of sodium tellurite, (C) 11.25	Na₂TeO₃ ? (D) 3.85			
<	(A) 10.15		(C) 11.25				



(D) +152 kJ

			t 25 °C and the Ent thalpy change for t	ropy change is -95 J/K. his reaction?
(A)	ΔH < 45.6 kJ	(B) ∆H :	> +28.3 J/K	(C) $\Delta H < -28.3 \text{ kJ}$
(D)	ΔH cannot be	determined withou	t knowing the sign	of ΔG
at 2		s the approximate v		orium constant, $K = 220$, ${}^{\circ}C$ when $P(N_2) = P(H_2) =$
(A)	+10.4 kJ	(B) -7.4 kJ	(C) -33.4 kJ	(D) -56.4 kJ
	the electroche tements is/are		Cu Cu²+ Au³+ Au,	which of the following
₹ (2)	Electrons flow circuit		ode to the Cu elect	rode through an external
$\lambda(4)$, NO₃⁻ ions flow towards
(A)	1 & 3	(B) 1 & 2 & 4	(C) 1 & 2 & 3	(D) 2 & 3 & 4
39. Re	garding the folk	owing reaction, whi	ich of the statemen	ts below is/are correct?
_	Fe ₂ C	$O_3(s) + 3 CO(g) \rightarrow$	2 Fe + 3 CO ₂ (g)	
		xidizing agent e transfered	✓(2) Fe is reduction ✓(4) CO is oxidi	
	3 & 4	(B) 1 & 4	(C) 1&3&4	(D) 2 & 3
	- #46: Use Ta of the test.	able 1 (Standard F	Reduction Potenti	als), as necessary, near
			2 K + Cd ²⁺ , the cell on potential for Cd ²	
(A)	+0.40 V	(B) -5.46 V	(C) -3.33 V	(D) -0.40 V
41. Wh	ich of the follov	ving reactions are	reactant favored?	
SKIP this Question (3)	Hg ²⁺ + 2 Cl ⁻	Hg + Cl ₂ Pol (2) $2 \text{ Ag}^+ + 2 \text{ I}^- \rightarrow 2$. Ag + 2 l ₂
Prof (3)	$Hg^{2+} + 2 Fe^{2+}$	\rightarrow Hg + 2 Fe ³⁺	4) $Cu^{2+} + 2 Ag \rightarrow 2$	2 Ag+ + Cu
(A)	2 & 3	(B) 1 & 4	(C) 3 only	(D) 1 & 3 & 4
	at is the standath $^{+}$ + 2 l $^{-}$ \rightarrow Ni +		ergy change for the	electrochemical reaction,

(A) -56 kJ (B) +76 kJ (C) +56 kJ

49. A total of 850 kJ of energy was required to plate out Al(s) [M=27.] by electr	olysis
of a Al(NO ₃) ₃ (aq) solution. The voltage was 8. Volts. Approximately how r	nany
grams of Al(s) were plated out by electrolysis?	·

- (A) 89.2 g
- (B) 5.4 g
- (C) 9.9 g
- (D) 29.7 g
- 50. Approximately how long would it take to electroplate a metal surface with 0.15 g of Nickel [M=58.7] metal from a Ni(NO₃)₂(aq) solution with a current of 150 mA (milliAmps)?
 - (A) 32.9 min
- (B) 157 min
- (C) 27.5 min
- 51. What nuclide will undergo electron capture to form Pt-195?
 - (A) Ir-196
- (B) Ir-195
- (C) Pt-196
- (D) Au-195
- 52. Which of the following decay paths is the most likely one for Rn-222?

SKIP this Question

(A)
$$_{86}^{222}Ra \rightarrow_{+1}^{0} e +_{85}^{222} At$$

(B)
$$_{86}^{222} Ra \rightarrow_{2}^{4} He +_{84}^{218} Po$$

(C)
$$^{222}_{86}Ra \rightarrow^{0}_{-1} e +^{222}_{87} Fr$$

(D)
$$_{86}^{222} Ra +_{-1}^{0} e \rightarrow_{85}^{222} At$$

- 53. Consider the nuclear reaction, ${}^{252}_{98}Cf + X \rightarrow 3 {}^{1}_{0}n + {}^{259}_{103}Lr$. What is X in this equation?
 - (A) 42He
- (B) $^{10}5B$
- $(C)^{-16}8O$
- (D) 8₅B
- 54. Which of the following is/are likely decay paths for Mg-22. Stable isotopes in this range typically have N/Z = 1.05.
 - (1) $^{22}_{12}Mg \rightarrow ^{0}_{-1}e + ^{22}_{13}Al$
- (2) $^{22}_{12}Mg \rightarrow ^{0}_{+1}e + ^{22}_{11}Na$
- (3) $^{22}_{12}Mg + ^{0}_{-1}e \rightarrow ^{22}_{11}Na$
- (4) ${}_{12}^{22}Mg \rightarrow {}_{2}^{4}He + {}_{10}^{18}Ne$

- (A) 1 & 4 (B) 4 only
- (D) 1&2

Two more MC questions on next page.

55. Use the Molar Masses below to calculate the approximate Binding Energy per Nucleon (Eb/N) of Pb-208.

 $m(_1^1H) = 1.008 \text{ g/mol}$, $m(_0^1n) = 1.009 \text{ g/mol}$, $m(_{82}^{208}Pb) = 207.977 \text{ g/mol}$

(A) 1.6x10¹⁴ kJ/mol

(B) 7.8x10¹¹ kJ/mol

(C) 7.8x108 kJ/mol

- (D) 1.6x10¹¹ kJ/mol
- 56. One nuclear fusion reaction involves the reaction of a deuterium and tritium nucleus to form helium: ${}_1^2H + {}_1^3H \rightarrow {}_2^4He + {}_0^1n$. This reaction is highly exothermic because:
 - (A) The n-n repulsions in deuter um and tritium are higher than in helium
 - (B) Helium has a higher Binding Energy per nucleon than deuterium or tritium
 - (C) The p-p attractions are greater in helium than in deuterium or tritoi,
 - (D) Helium has a lower Binding Energy per nucleon than deuterium or tritium