Version A CHEM 1423 - Final Exam – May 12, 2015

Name_____

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting.

Problem (4 pts): A concentration cell is prepared with 0.60 M Calcium Nitrate, Ca(NO₃)₂, in the reference compartment (cathode) and a saturated solution of Calcium Phosphate, Ca₃(PO₄)₂, in the sample compartment (anode).

The cell reaction can be written as: Ca(s)|Ca²⁺(xx M)||Ca²⁺(0.60 M)|Ca(s)

The measured cell voltage is +0.161 V. Calculate the Solubility Product, K_{sp}, of Ca₃(PO₄)₂

Conversions: 1 atm. = 760 torr

Constants: R = 0.082 L-atm/mol·K R = 8.31 J/mol·K R = 8.31x10⁻³ kJ/mol·K N_A = $6.02x10^{23}$ mol⁻¹ F = 96,500 Coul/mol e⁻ c = $3.00x10^8$ m/s (speed of light)

Molar Masses: Given with each question: [M=xx]

ELECTROCHEMISTRY INFORMATION

Table 1: Standard Reduction Potentials

Reduction Half-Reactions E^o(V)

$F_2 + 2 e^- \rightarrow 2 F^-$	+2.87
$Au^{3+} + 3 e^{-} \rightarrow Au$	+1.50
$Cl_2 + 2 e^- \rightarrow 2 Cl^-$	+1.36
$Br_2 + 2 e^- \rightarrow 2 Br^-$	+1.07
$Hg^{2+} + 2 e^{-} \rightarrow Hg$	+0.86
$Ag^+ + 1 e^- \rightarrow Ag$	+0.80
$I_2 + 2 e^- \rightarrow 2 I^-$	+0.54
$Cu^{2+} + 2 e^{-} \rightarrow Cu$	+0.34
$Fe^{3+} + 3 e^{-} \rightarrow Fe$	-0.04
$Sn^{2+} + 2 e^{-} \rightarrow Sn$	-0.14
$Ni^{2+} + 2 e^{-} \rightarrow Ni$	-0.25
$Zn^{2+} + 2 e^{-} \rightarrow Zn$	-0.76
$Mn^{2+} + 2 e^{} \rightarrow Mn$	-1.18
$AI^{3+} + 3 e^{-} \rightarrow AI$	-1.66
$Mg^{2+} + 2 e^{-} \rightarrow Mg$	-2.37
$K^+ + 1 e^- \rightarrow K$	-2.93
$Li^+ + 1 e^- \rightarrow Li$	-3.05

Table 2: Some Reduction and Oxidation Potentials in Aqueous Solution

Reduction Potentials

$2 \text{ H}_2\text{O} + 2 \text{ e}^- \rightarrow \text{H}_2 + 2 \text{ OH}^-$	E^{o}_{red} = -0.83 V
$AI^{3+} + 3 e^{-} \rightarrow AI$	E^{o}_{red} = -1.66 V
$Zn^{2+} + 2 e^{-} \rightarrow Zn$	E^{o}_{red} = -0.76 V
$Mg^{2+} + 2 e^{-} \rightarrow Mg$	E^{o}_{red} = -2.37 V
Na⁺ + 3 e⁻ → Na	E^{o}_{red} = -2.71 V
$Fe^{2+} + 2e^{-} \rightarrow Fe$	E^{o}_{red} = -0.44 V

Oxidation Potentials

$2 H_2O \rightarrow O_2 + 4 H^+ + 4 e^-$	E^{o}_{oxid} = -1.23 V
$2 I^{-} \rightarrow I_{2} + 2 e^{-}$	E^{o}_{oxid} = -0.54 V
$2 \text{ Br}^- \rightarrow \text{Br}_2 + 2 \text{ e}^-$	E^{o}_{oxid} = -1.07 V
$2 F^{-} \rightarrow F_2 + 2 e^{-}$	E^{o}_{oxid} = -2.87 V

Some Electrochemical Equations

 $F = 96,500 \text{ C/mol e}^{-}$ (Coulombs per mole of electrons)

1 J = 1 CxV [i.e. 1 Joule = 1 Coulomb x Volt]

 $\Delta G^o = -nFE^o$

$$E = E^{\circ} - \frac{0.0592}{n} \cdot \log(Q)$$

Q = i x t i.e. Charge (in Coul) = Current (in Amps = Coul/sec) x time (in sec)]

E = Q x V i.e. Energy (in J) = Charge (in Coulombs) x Voltage (in Volts) (note: 1 Coulomb-Volt = 1 Joule)

(56) MULTIPLE CHOICE (Mark the one correct answer to each question on your scantron)

Turn in: (a) Your scantron with your name and answers (there is no need to bubble in your ID.

(b) The cover sheet with your Electrochemistry Problem + four (4) digit number if you would like your results posted on the course web site.

Each Multiple Choice question is worth 1 point. The problem is worth 4 points, yielding a total of 60 points on the test. Your score will be converted to a percentage prior to any further analysis.

1. Consider the hypothetical reaction, $3A + B \rightarrow 2C$. If the rate of change of [A] is $\Delta[A]/dt = -0.60 \text{ M hr}^{-1}$. What is the "rate" of the reaction?

(A) +0.20 M hr ⁻¹	(B) -0.40 M hr ⁻¹
(C) -0.20 M hr ^{-r}	(D) +0.40 M hr ⁻¹

2. The rate of the chemical reaction involving two substances, A and B, is measured. It is found that if the initial concentration of A used is tripled, keeping the B concentration the same, the rate increases by a factor of nine (9) (relative to the first experiment). If the concentrations of both A and B are doubled, the rate increases by a factor of thirty-two (32) (relative to the first experiment). The rate law for this reaction is: Rate =

```
(A) k[A]^{2}[B]^{2} (B) k[A][B]^{3} (C) k[A]^{2}[B]^{3} (D) k[A]^{3}[B]^{2}
```

- 3. The reaction, A → Products, is of order "n" with respect to [A]; i.e. Rate = k[A]ⁿ. When the initial concentration of A is 0.60 M, the initial rate is 0.50 Ms⁻¹. When the initial concentration of A is 0.20 M, the initial rate is 4.50 Ms⁻¹. The order of this reaction, n, is:
 - (A) -2 (B) -1 (C) +1 (D) +2
- The rate law for a given reaction, A → Products, is **fourth** order with respect to [A]? When the initial concentration of A is 0.80 M, the initial rate is 0.45 Ms⁻¹. The rate constant for this reaction is approximately:

(A) $1.4 \text{ M}^{-3}\text{s}^{-1}$ (B) $0.73 \text{ M}^{-3}\text{s}^{-1}$ (C) $0.91 \text{ M}^{-3}\text{s}^{-1}$ (D) $1.1 \text{ M}^{-3}\text{s}^{-1}$

- 5. For the **first** order reaction, $A \rightarrow Products$, the rate constant is 0.025 s⁻¹. If the initial concentration of A is 0.50 M, what is the approximate concentration of A after 20 s?
 - (A) 0.40 M (B) 0.30 M (C) 0.26 M (D) 0.61 M

 For the second order reaction, A → Products, when the initial concentration of A is 0.90 M, it takes 40 s for the concentration to decrease to 0.30 M. The rate constant for this reaction is approximately:

(A) $0.027 \text{ M}^{-1}\text{s}^{-1}$ (B) $0.056 \text{ M}^{-1}\text{s}^{-1}$ (C) $0.015 \text{ M}^{-1}\text{s}^{-1}$ (D) $0.082 \text{ M}^{-1}\text{s}^{-1}$

7. For the reaction, $2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$, the reaction mechanism is:

$2 \text{ NO} \rightleftharpoons \text{N}_2\text{O}_2$	Fast Equilibrium (N ₂ O ₂) is an intermediate
--	--

 $N_2O_2 + O_2 \rightarrow 2 NO_2$ Slow rate determining step

The overall rate equation for this reaction is:

- (A) Rate = $k'[NO]^2/[O_2]$ (B) Rate = $k'[O_2][2NO]$
- (C) Rate = $k'[O_2][NO]$ (D) Rate = $k'[O_2][NO]^2$

For #8-#9: Consider the gas phase equilibrium, $2 \text{ POBr}_3(g) \rightarrow 2 \text{ PBr}_3(g) + O_2(g)$.

- 8. For the above reaction, if the volume is **decreased**, the ratio [PBr₃]/[POBr₃] will _____ and K_c will _____.
 - (A) increase , increase (B) increase , remain constant
 - (C) decrease , remain constant (D) decrease , decrease
- 9. For the above reaction, if Br₂(g) is added to the mixture at **constant pressure**, then the ratio [PBr₃]/[POBr₃] will _____ and K_c will _____
 - (A) increase , increase (B) increase , remain constant
 - (C) decrease, remain constant (D) remain constant, remain constant
- 10. Consider the gas phase equilibrium reaction, $A(g) \Rightarrow 2 B(g)$. If one initially fills a container with A at a concentration of 2.0 M, and then allows it to come to equilibrium, it is found that the equilibrium concentration of A is 1.6 M. Therefore, the value of the equilibrium constant, K_c is approximately:
 - (A) 0.40 (B) 0.50 (C) 0.10 (D) 0.67
- 11. Consider the reaction: $2HBr(g) \xleftarrow{K_c} H_2(g) + Br_2(g)$. The equilibrium constant is K_c = 15.0 at 100 °C. The Enthalpy Change for this reaction is $\Delta H^\circ = +70$. kJ/mol. What is the approximate value of K_c at 50 °C?
 - (A) 33. (B) 0.030 (C) 490 (D) 0.45

12. The gas phase molecule, A, dissociates according to the equilibrium,

 $A(g) \rightleftharpoons 3 B(g) + C(g)$. The equilibrium constant is $K_c = 1 \times 10^{-3}$. If one puts an initial concentration of 2.0 M of A into a flask, what is the approximate concentration of B at equilibrium? [NOTE: You may assume that very little A dissociates]

- (A) 0.15 M (B) 0.28 M (C) 0.09 M (D) 0.15 M
- 13. The concentration of Copper (by mass) in a sample of water is 450 ppb. Approximately how many nanograms (ng) of Copper are contained in 150 mL of the solution?:
 - (A) 6.8×10^4 ng (B) 4.5×10^5 ng (C) 68 ng
 - (D) None of the above
- When 16 grams of methanol, CH₃OH [M=32] is added to 108 grams of water [M=18], the density of the solution is 0.90 g/mL. The **Molarity** of methanol in this solution is:
 - (A) 3.63 M (B) 4.17 M (C) 4.48 M (D) 4.63 M
- 15. A sample of ethylene glycol, $C_2H_6O_2$, is dissolved in 700 grams of water (K_f = 1.86 °C/m). The freezing point of the solution is -3.6 °C. Approximately how many moles of ethylene glycol are dissolved in this sample?
 - (A) 0.42 mol (B) 1.35 mol (C) 1.94 mol (D) 2.76 mol
- 16. Which of the following solutions has the lowest freezing point?
 - (A) $0.32 \text{ m } C_6H_{12}O_{6a}$ (B) $0.10 \text{ m } Ca(NO_3)_2$
 - (C) 0.09 m K₃PO₄ (D) 0.20 m NaBr
- 17. What is the approximate osmotic pressure, **in torr**, when 5.0x10⁻⁴ mol of the strong electrolyte, Calcium Phosphate [Ca₃(PO₄)₂], is dissolved in 600 mL of aqueous solution at 25 °C?
 - (A) 15 torr (B) 77 torr (C) 0.10 torr (D) 46 torr
- 18. The normal boiling point of pure CCl₄(I) is 77.0 °C and the boiling point elevation constant is 5.0 °C/m. When 60. grams of an unknown compound is placed in 750 grams of CCl₄, the boiling point of the solution is 80.5 °C. The Molar Mass of the unknown compound is approximately:
 - (A) 64 g/mol (B) 86 g/mol (C) 114 g/mol (D) 153 g/mol
- 19. Approximately how many grams of NaOH [M=40] must be dissolved in 15. L of aqueous solution to prepare a solution with pH = 9.7?
 - (A) $7.5x10^{-2}$ g (B) $7.5x10^{-4}$ g (C) $2.0x10^{-3}$ g (D) $3.0x10^{-2}$ g

- 20. The pH of a 0.10 M acetate (KAc) is 8.90 . The base equilibrium constnat, K_b , of the acetate ion (Ac⁻) is approximately:
 - (A) 1.6x10⁻⁵ (B) 6.3x10⁻¹⁰ (C) 1.6x10⁻¹⁷ (D) 4.8x10⁻⁷
- 21. Benzoic Acid (HBenz) has an acid dissociation constant of 1.6x10⁻⁹. What is the approximate pH a 0.20 M solution of aqueous sodium benzoate (NaBenz)?
 - (A) 11.0 (B) 9.3 (C) 4.7 (D) 3.0
- 22. The weak base, aniline (Anil), has a base equilibrium constant, $K_b = 4.3 \times 10^{-10}$. What is the pH of a 0.05 M aqueous solution of anilinium chloride (AnilHCI)?
 - (A) 11.0 (B) 8.7 (C) 5.3 (D) 3.0
- 23. If added to 2 L of 0.80 M NaOH, which one of the following would form a buffer?
 - (A) 2. L of 0.50 M Nitric Acid (HNO₃)
 - (B) 2. L of 0.50 M Acetic Acid (HAc)
 - (C) 2. L of 1.0 M Lactic Acid (HLac)
 - (D) 2. L of 1.0 M Potassium Acetate (KAc)

For #24 - #28: Tellurous acid, H₂TeO₃, is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$

- 24. What is the pH of a 0.04 M solution of sodium tellurite, Na₂TeO₃?
 - (A) 9.45 (B) 10.15 (C) 11.25 (D) 3.85
- 25. What is the pH of a solution containing 0.20 M KHTeO₃ and 0.50 M Na₂TeO₃?

(A) 2.92	(B) 7.30	(C) 8.10	(D) 2.12

- 26. What is the pH of a solution prepared by adding 0.35 mol of KOH to 2.0 L of 0.50 M H₂TeO₃?
 - (A) 7.43 (B) 2.79 (C) 2.06 (D) 2.25
- 27. What is the pH of a solution prepared by adding 2 L of 0.70 M HCl to 2 L of 0.45 M Na₂TeO₃ ?

(A) 7.60 (B) 2.42 (C) 7.80 (D) 2.62

28. What ratio of $[HTeO_3^-]/[TeO_3^2^-]$ will give a pH of 7.00

(A) 5.0 (B) 0.38 (C) 2.63 (D) 0.20

- 29. 600 mL of 0.30 M KOH(aq) are required to completely neutralize 400 mL of an aqueous H₂SO₄(aq) solution. What is the Molarity of the acid solution?
 - (A) 0.23 M (B) 0.36 M (C) 0.45 M (D) 0.90 M
- 30. Consider the slightly soluble compound, silver carbonate, Ag₂CO₃. The solubility product constant is K_{sp} = 6.2x10⁻¹².

What is the concentration of silver ions, $[Ag^+]$, in a solution containing Ag_2CO_3 and 0.1 M K₂CO₃(aq)?

(A)
$$1.6 \times 10^{-5}$$
 M (B) 7.9×10^{-6} M (C) 3.9×10^{-6} M (D) 2.5×10^{-6} M

- 31. Consider the reaction: $2 \text{ NO}_2(g) \rightarrow N_2(g) + 2 \text{ O}_2(g)$, $\Delta H^\circ < 0$. This reaction is:
 - (A) Reactant Favored at all temperatures
 - (B) Product Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature
- 32. For a hypothetical reaction, $A \rightleftharpoons B$, $\Delta H^{\circ} = +80$ kJ. The equilibrium constant for the reaction is 3.0×10^{-11} at 25 °C. ΔS° for this reaction is approximately:
 - (A) -470 J/K (B) -67 J/K (C) +470 J/K (D) +67 J/K
- 33. The enthalpy of vaporization of liquid benzene, C₆H₆(I), is +30.7 kJ/mol. What is the entropy change of the **surroundings**, ΔS_{surr} , for the condensation of 0.50 mol of benzene gas at the boiling point, 80 °C?
 - (A) -87. J/K (B) -192 J/K (C) -43.5 J/K (D) +87 J/K
- 34. For the reaction, $2 N_2O_5(g) \Rightarrow 2 N_2(g) + 5 O_2(g)$, is $\Delta G^\circ = -236$ kJ at 25°C. What is the approximate value of the Equilibrium Constant for the **related reaction**: $N_2(g) + (5/2) O_2(g) \Rightarrow N_2O_5(g)$ at 25 °C?
 - (A) 2.0x10⁻²¹ (B) 2.4x10⁺⁴¹ (C) 2.0x10⁻⁴²
 - (D) None of the above
- 35. For the reaction, 2 K₂O(s) \rightarrow 4 K(s) + O₂(g, Δ H^o = +48 kJ and Δ S^o = +85 J/K. This reaction is ______ favored at temperatures **below** _____ °C (Celsius).
 - (A) Product , 292 °C (B) Product , 565 °C
 - (C) Reactant, 292 °C (D) Reactant, 565 °C

- 36. For the reaction, N₂(g) + 3 H₂(g) \Rightarrow 2 NH₃(g), the equilibrium constant, K = 220, at 240 °C. What is the approximate value of Δ G at 240 °C when P(N₂) = P(H₂) = 0.10 bar and P(NH₃) = 0.50 bar?
 - (A) -33.4 kJ (B) -7.4 kJ (C) +10.4 kJ (D) -56.4 kJ
- 37. The reaction, $A \rightarrow B$, is **exergonic** at 25 °C and the Entropy change is -95 J/K. What can be concluded about the Enthalpy change for this reaction?
 - (A) $\Delta H < 45.6 \text{ kJ}$ (B) $\Delta H < -28.3 \text{ J/K}$ (C) $\Delta H > +28.3 \text{ kJ}$
 - (D) ΔH cannot be determined without knowing the sign of ΔG
- 38. Regarding the following reaction, which of the statements below is/are correct?

	Fe ₂ O	3(s) + 3 CO(g)	→ 2 Fe + 3 CO ₂ (g)	
(1) (3)	Fe ₂ O ₃ is the ox 6 electrons are	idizing agent transfered	(2) Fe is reduced(4) CO is oxidized	
(A)	1 & 4	(B) 1 & 3 & 4	(C) 3 & 4	(D) 2&3

- 39. For the electrochemical cell given by Cu|Cu²⁺||Au³⁺|Au, which of the following statements is/are correct?
 - (1) The cathode reaction is $Au^{3+} + 3e^- \rightarrow Au$
 - (2) Electrons flow from the Au electrode to the Cu electrode through an external circuit
 - (3) The anode reaction is $Cu \rightarrow Cu^{2+} + 2 e^{-}$
 - (4) If the half-cells are separated by a KNO₃ salt bridge, NO₃⁻ ions flow towards the Au electrode
 - (A) 1 & 2 & 3 (B) 1 & 2 & 4 (C) 1 & 3 (D) 2 & 3 & 4

For #40 - #46: Use Table 1 (Standard Reduction Potentials), as necessary, near the top of the test.

- 40. Which of the following reactions are reactant favored?
 - (1) $Hg^{2+} + 2 CI^{-} \rightarrow Hg + CI_{2}$ (2) $2 Ag^{+} + 2 I^{-} \rightarrow 2 Ag + 2 I_{2}$
 - (3) $Hg^{2+} + 2 Fe^{2+} \rightarrow Hg + 2 Fe^{3+}$ (4) $Cu^{2+} + 2 Ag \rightarrow 2 Ag^{+} + Cu$
 - (A) 2 & 3 (B) 1 & 3 & 4 (C) 3 only (D) 1 & 4
- 41. For the redox reaction, 2 K⁺ + Cd \rightarrow 2 K + Cd²⁺, the cell potential is: E^o_{Cell} = -2.53 V. What is the reduction potential for Cd²⁺ ?
 - (A) -0.40 V (B) -5.46 V (C) -3.33 V (D) +0.40 V
- 42. What is the standard Gibbs Free Energy change for the electrochemical reaction, Ni²⁺ + 2 l⁻ → Ni + l₂ ?
 - (A) -56 kJ (B) +76 kJ (C) +56 kJ (D) +152 kJ

- 43. For the redox reaction, 2 Al³⁺ + 3 Mn \rightarrow 2 Al + 3 Mn²⁺, the cell potential is: $E^{o}_{cell} = -0.48 \text{ V}$. What is the equilibrium constant, K, for this reaction?
 - (A) 4.7x10⁻²⁵ (B) 2.2x10⁻⁴⁹ (C) 4.5x10⁺⁴⁸ (D) 7.8x10⁻⁹
- 44. Consider the following electrochemical cell reaction (values in parentheses indicate Molar Concentrations): Ag(s)|Ag⁺(0.002 M)||Au³⁺(3.00 M)|Au(s) . For this reaction, E^o_{cell} = +0.70 V. What is the cell potential, E_{cell}, at the concentrations shown in the reaction?
 - (A) +0.36 V (B) +1.21 V (C) +0.53 V (D) +0.87 V
- 45. The concentration of lead [Pb, M=207.2] in drinking water was determined using a concentration cell with 0.30 M lead(II) nitrate, Pb(NO₃)₂, in the reference cell (the cathode) and a sample of water with an unknown concentration of Pb²⁺(xx) in the sample cell (the anode).

In cell notation, this can be written as: $Pb(s)|Pb^{2+}(xx)||Pb^{2+}(0.20 \text{ M})|Pb(s)$.

The cell potential in the above concentration cell was measured to be +0.140 V. Therefore, the concentration of lead in the sample, in **milligrams per Liter** (mg/L) is approximately:

- (A) 1.2 mg/L (B) 550 mg/L (C) 3.9 mg/L (D) 3.9x10⁻³ mg/L
- 46. The reaction for the reduction of O₂ in the environment and the reduction potetial for this reaction is given by: $O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^ E_{red}^o(O_2) = +0.40 V$

Based upon electrochemical considerations, which of the following metals would be expected to corrode (i.e. undergo oxidation) in the presence of O_2 and H_2O ? Ag, Sn, Cu, Hg

(A) Cu only (B) Hg & Cu (C) Sn & Cu (D) Ag & Hg

For #47 - #48: Use Table 2 (Some Reduction and Oxidation Potentials in Aqueous Solution) near the top of the test.

47. If aqueous Zn(II) Fluoride, ZnF₂(aq) is placed in an electrolysis cell, and a voltage is applied, what will be the principal products of the electrolysis?

(A) Zn , F ₂	(B) Zn , O ₂ , H ⁺
(C) F ₂ , H ₂ , OH ⁻	(C) H ₂ , OH ⁻ , O ₂ , H ⁺

- 48. If aqueous Aluminum Iodide, AlI₃(aq) is placed in an electrolysis cell, and a voltage is applied, what will be the principal products of the electrolysis?
 - (A) AI , I_2 (B) AI , O_2 , H^+
 - (C) I_2 , H_2 , OH^- (C) H_2 , OH^- , O_2 , H^+

- 49. Approximately how long would it take to electroplate a metal surface with 0.15 g of Nickel [M=58.7] metal from a Ni(NO₃)₂(aq) solution with a current of 150 mA (milliAmps)?
 - (A) 54.8 min (B) 157 min (C) 27.5 min (D) 32.9 min
- 50. A total of 850 kJ of energy was required to plate out Al(s) [M=27.] by electrolysis of a Al(NO₃)₃(aq) solution. The voltage was 8. Volts. Approximately how many grams of Al(s) were plated out by electrolysis?
 - (A) 89.2 g (B) 9.9 g (C) 5.4 g (D) 29.7 g
- 51. Consider the nuclear reaction, ${}^{252}_{98}Cf + X \rightarrow 3{}^{1}_{0}n + {}^{259}_{103}Lr$. What is X in this equation?
 - (A) ${}^{4}_{2}$ He (B) ${}^{8}_{5}$ B (C) ${}^{16}_{8}$ O (D) ${}^{10}_{5}$ B
- 52. What nuclide will undergo electron capture to form Pt-195?
 - (A) Ir-196 (B) Ir-195 (C) Au-195 (D) Pt-196
- 53. Which of the following decay paths is the most likely one for Rn-222?

(A)	$^{222}_{86}Ra \rightarrow^{0}_{+1}e +^{222}_{85}At$	(B)	$^{222}_{86}Ra \rightarrow^{4}_{2}He +^{218}_{84}Po$
(C)	$^{222}_{86}Ra \rightarrow^{0}_{-1}e +^{222}_{87}Fr$	(D)	$^{222}_{86}Ra +^{0}_{-1}e \rightarrow^{222}_{85}At$

- 54. Which of the following is/are likely decay paths for Mg-22. Stable isotopes in this range typically have N/Z = 1.05.
 - (1) ${}^{22}_{12}Mg \rightarrow {}^{0}_{-1}e + {}^{22}_{13}Al$ (2) ${}^{22}_{12}Mg \rightarrow {}^{0}_{+1}e + {}^{22}_{11}Na$
 - (3) ${}^{22}_{12}Mg + {}^{0}_{-1}e \rightarrow {}^{22}_{11}Na$ (4) ${}^{22}_{12}Mg \rightarrow {}^{4}_{2}He + {}^{18}_{10}Ne$
 - (A) 2 & 3 (B) 4 only (C) 1 & 4 (D) 1 & 2

Two more MC questions on next page.

- 55. One nuclear fusion reaction involves the reaction of a deuterium and tritium nucleus to form helium: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$. This reaction is highly exothermic because:
 - (A) The n-n repulsions in deuterium and tritium are higher than in helium
 - (B) Helium has a lower Binding Energy per nucleon than deuterium or tritium
 - (C) The p-p attractions are greater in helium than in deuterium or tritoi,
 - (D) Helium has a higher Binding Energy per nucleon than deuterium or tritium
- 56. Use the Molar Masses below to calculate the approximate Binding Energy per Nucleon (Eb/N) of Pb-208.

 $m(_{1}H) = 1.008 \text{ g/mol}$, $m(_{0}n) = 1.009 \text{ g/mol}$, $m(_{82}^{208}Pb) = 207.977 \text{ g/mol}$

- (A) 1.6x10¹¹ kJ/mol (B) 7.8x10¹¹ kJ/mol
- (C) 7.8x10⁸ kJ/mol (D) 1.6x10¹⁴ kJ/mol

CHEM 1423 - Final Exam – May 12, 2015

Name_____

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting.

Problem (4 pts): A concentration cell is prepared with 0.20 M Calcium Nitrate, $Ca(NO_3)_2$, in the reference compartment (cathode) and a saturated solution of Calcium Phosphate, $Ca_3(PO_4)_2$, in the sample compartment (anode).

The cell reaction can be written as: Ca(s)|Ca²⁺(xx M)||Ca²⁺(0.20 M)|Ca(s)

The measured cell voltage is +0.146 V. Calculate the Solubility Product, K_{sp}, of Ca₃(PO₄)₂

Conversions: 1 atm. = 760 torr

Constants: R = 0.082 L-atm/mol·K R = 8.31 J/mol·K R = 8.31x10⁻³ kJ/mol·K N_A = $6.02x10^{23}$ mol⁻¹ F = 96,500 Coul/mol e⁻ c = $3.00x10^8$ m/s (speed of light)

Molar Masses: Given with each question: [M=xx]

ELECTROCHEMISTRY INFORMATION

Table 1: Standard Reduction Potentials

Reduction Half-Reactions E^o(V)

$F_2 + 2 e^- \rightarrow 2 F^-$	+2.87
$Au^{3+} + 3 e^{-} \rightarrow Au$	+1.50
$Cl_2 + 2 e^- \rightarrow 2 Cl^-$	+1.36
$Br_2 + 2 e^- \rightarrow 2 Br^-$	+1.07
$Hg^{2+} + 2 e^{-} \rightarrow Hg$	+0.86
$Ag^+ + 1 e^- \rightarrow Ag$	+0.80
$I_2 + 2 e^- \rightarrow 2 I^-$	+0.54
$Cu^{2+} + 2 e^{-} \rightarrow Cu$	+0.34
$Fe^{3+} + 3 e^{-} \rightarrow Fe$	-0.04
$Sn^{2+} + 2 e^{-} \rightarrow Sn$	-0.14
$Ni^{2+} + 2 e^{-} \rightarrow Ni$	-0.25
$Zn^{2+} + 2 e^{-} \rightarrow Zn$	-0.76
$Mn^{2+} + 2 e^{} \rightarrow Mn$	-1.18
$AI^{3+} + 3 e^{-} \rightarrow AI$	-1.66
$Mg^{2+} + 2 e^{-} \rightarrow Mg$	-2.37
$K^+ + 1 e^- \rightarrow K$	-2.93
$Li^+ + 1 e^- \rightarrow Li$	-3.05

Table 2: Some Reduction and Oxidation Potentials in Aqueous Solution

Reduction Potentials

$2 \text{ H}_2\text{O} + 2 \text{ e}^- \rightarrow \text{H}_2 + 2 \text{ OH}^-$	E^{o}_{red} = -0.83 V
$AI^{3+} + 3 e^{-} \rightarrow AI$	E^{o}_{red} = -1.66 V
$Zn^{2+} + 2 e^{-} \rightarrow Zn$	E^{o}_{red} = -0.76 V
$Mg^{2+} + 2 e^- \rightarrow Mg$	E^{o}_{red} = -2.37 V
Na⁺ + 3 e⁻ → Na	E^{o}_{red} = -2.71 V
$Fe^{2+} + 2e^{-} \rightarrow Fe$	E^{o}_{red} = -0.44 V

Oxidation Potentials

$2 \text{ H}_2\text{O} \rightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^-$	E^{o}_{oxid} = -1.23 V
$2 I^{-} \rightarrow I_{2} + 2 e^{-}$	E^{o}_{oxid} = -0.54 V
$2 \text{ Br}^- \rightarrow \text{Br}_2 + 2 \text{ e}^-$	E^{o}_{oxid} = -1.07 V
$2 F^- \rightarrow F_2 + 2 e^-$	E^{o}_{oxid} = -2.87 V

Some Electrochemical Equations

 $F = 96,500 \text{ C/mol e}^{-}$ (Coulombs per mole of electrons)

1 J = 1 CxV [i.e. 1 Joule = 1 Coulomb x Volt]

 $\Delta \mathsf{G}^{\mathsf{o}} = \mathsf{-nFE}^{\mathsf{o}}$

$$E = E^{\circ} - \frac{0.0592}{n} \cdot \log(Q)$$

Q = i x t i.e. Charge (in Coul) = Current (in Amps = Coul/sec) x time (in sec)]

E = Q x V i.e. Energy (in J) = Charge (in Coulombs) x Voltage (in Volts) (note: 1 Coulomb-Volt = 1 Joule)

(56) MULTIPLE CHOICE (Mark the one correct answer to each question on your scantron)

Turn in: (a) Your scantron with your name and answers (there is no need to bubble in your ID.

(b) The cover sheet with your Electrochemistry Problem + four (4) digit number if you would like your results posted on the course web site.

Each Multiple Choice question is worth 1 point. The problem is worth 4 points, yielding a total of 60 points on the test. Your score will be converted to a percentage prior to any further analysis.

- The reaction, A → Products, is of order "n" with respect to [A]; i.e. Rate = k[A]ⁿ. When the initial concentration of A is 0.60 M, the initial rate is 0.50 Ms⁻¹. When the initial concentration of A is 0.20 M, the initial rate is 4.50 Ms⁻¹. The order of this reaction, n, is:
 - (A) +2 (B) -1 (C) +1 (D) -2
- 2. The rate law for a given reaction, $A \rightarrow Products$, is **fourth** order with respect to [A]? When the initial concentration of A is 0.80 M, the initial rate is 0.45 Ms⁻¹. The rate constant for this reaction is approximately:

(A) $1.4 \text{ M}^{-3}\text{s}^{-1}$ (B) $1.1 \text{ M}^{-3}\text{s}^{-1}$ (C) $0.91 \text{ M}^{-3}\text{s}^{-1}$ (D) $0.73 \text{ M}^{-3}\text{s}^{-1}$

- 3. For the **first** order reaction, $A \rightarrow Products$, the rate constant is 0.025 s⁻¹. If the initial concentration of A is 0.50 M, what is the approximate concentration of A after 20 s?
 - (A) 0.40 M (B) 0.26 M (C) 0.30 M (D) 0.61 M
- 4. The rate of the chemical reaction involving two substances, A and B, is measured. It is found that if the initial concentration of A used is tripled, keeping the B concentration the same, the rate increases by a factor of nine (9) (relative to the first experiment). If the concentrations of both A and B are doubled, the rate increases by a factor of thirty-two (32) (relative to the first experiment). The rate law for this reaction is: Rate =
 - (A) $k[A]^{2}[B]^{2}$ (B) $k[A][B]^{3}$ (C) $k[A]^{3}[B]^{2}$ (D) $k[A]^{2}[B]^{3}$
- 5. Consider the hypothetical reaction, $3A + B \rightarrow 2C$. If the rate of change of [A] is Δ [A]/dt = -0.60 M hr⁻¹. What is the "rate" of the reaction?
 - (A) -0.40 M hr⁻¹ (B) +0.40 M hr⁻¹
 - (C) -0.20 M hr^{-r} (D) $+0.20 \text{ M hr}^{-1}$

6. For the reaction, $2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$, the reaction mechanism is:

$2 \text{ NO} \rightleftarrows N_2O_2$	Fast Equilibrium (N2O2) is an intermediate
$N_2O_2 + O_2 \rightarrow 2 NO_2$	Slow rate determining step

The overall rate equation for this reaction is:

= k'[O ₂][2NO]

- (C) Rate = $k'[O_2][NO]^2$ (D) Rate = $k'[O_2][NO]$
- For the second order reaction, A → Products, when the initial concentration of A is 0.90 M, it takes 40 s for the concentration to decrease to 0.30 M. The rate constant for this reaction is approximately:
 - (A) 0.056 M⁻¹s⁻¹ (B) 0.027 M⁻¹s⁻¹ (C) 0.015 M⁻¹s⁻¹ (D) 0.082 M⁻¹s⁻¹

For #8-#9: Consider the gas phase equilibrium, $2 \text{ POBr}_3(g) \rightarrow 2 \text{ PBr}_3(g) + O_2(g)$.

- 8. For the above reaction, if Br₂(g) is added to the mixture at **constant pressure**, then the ratio [PBr₃]/[POBr₃] will _____ and K_c will _____
 - (A) increase , increase (B) decrease , remain constant
 - (C) increase, remain constant (D) remain constant, remain constant
- 9. For the above reaction, if the volume is **decreased**, the ratio [PBr₃]/[POBr₃] will _____ and K_c will _____.
 - (A) increase , increase (B) decrease , remain constant
 - (C) increase , remain constant (D) decrease , decrease
- 10. Consider the reaction: $2HBr(g) \xleftarrow{K_c} H_2(g) + Br_2(g)$. The equilibrium constant is K_c = 15.0 at 100 °C. The Enthalpy Change for this reaction is $\Delta H^\circ = +70$. kJ/mol. What is the approximate value of K_c at 50 °C?
 - (A) 33. (B) 0.45 (C) 490 (D) 0.030
- 11. Consider the gas phase equilibrium reaction, $A(g) \rightleftharpoons 2 B(g)$. If one initially fills a container with A at a concentration of 2.0 M, and then allows it to come to equilibrium, it is found that the equilibrium concentration of A is 1.6 M. Therefore, the value of the equilibrium constant, K_c is approximately:
 - (A) 0.10 (B) 0.50 (C) 0.67 (D) 0.40

12. The gas phase molecule, A, dissociates according to the equilibrium,

 $A(g) \rightleftharpoons 3 B(g) + C(g)$. The equilibrium constant is $K_c = 1 \times 10^{-3}$. If one puts an initial concentration of 2.0 M of A into a flask, what is the approximate concentration of B at equilibrium? [NOTE: You may assume that very little A dissociates]

- (A) 0.15 M (B) 0.15 M (C) 0.09 M (D) 0.28 M
- When 16 grams of methanol, CH₃OH [M=32] is added to 108 grams of water [M=18], the density of the solution is 0.90 g/mL. The **Molarity** of methanol in this solution is:
 - (A) 4.48 M (B) 4.17 M (C) 3.63 M (D) 4.63 M
- 14. The concentration of Copper (by mass) in a sample of water is 450 ppb. Approximately how many nanograms (ng) of Copper are contained in 150 mL of the solution?:
 - (A) 68 ng (B) 4.5×10^5 ng (C) 6.8×10^4 ng
 - (D) None of the above
- 15. Which of the following solutions has the **lowest** freezing point?

(A)	$0.32 \text{ m C}_{6}\text{H}_{12}\text{O}_{6a}$	(B)	0.20 m NaBr
(C)	0.10 m Ca(NO ₃) ₂	(D)	0.09 m K ₃ PO ₄

- 16. A sample of ethylene glycol, $C_2H_6O_2$, is dissolved in 700 grams of water (K_f = 1.86 °C/m). The freezing point of the solution is -3.6 °C. Approximately how many moles of ethylene glycol are dissolved in this sample?
 - (A) 1.35 mol (B) 0.42 mol (C) 1.94 mol (D) 2.76 mol
- 17. The normal boiling point of pure CCl₄(I) is 77.0 °C and the boiling point elevation constant is 5.0 °C/m. When 60. grams of an unknown compound is placed in 750 grams of CCl₄, the boiling point of the solution is 80.5 °C. The Molar Mass of the unknown compound is approximately:
 - (A) 64 g/mol (B) 86 g/mol (C) 153 g/mol (D) 114 g/mol
- What is the approximate osmotic pressure, in torr, when 5.0x10⁻⁴ mol of the strong electrolyte, Calcium Phosphate [Ca₃(PO₄)₂], is dissolved in 600 mL of aqueous solution at 25 °C?
 - (A) 77 torr (B) 15 torr (C) 0.10 torr (D) 46 torr
- 19. Approximately how many grams of NaOH [M=40] must be dissolved in 15. L of aqueous solution to prepare a solution with pH = 9.7?
 - (A) $7.5x10^{-2}$ g (B) $3.0x10^{-2}$ g (C) $2.0x10^{-3}$ g (D) $7.5x10^{-4}$ g

20. The weak base, aniline (Anil), has a base equilibrium constant, $K_b = 4.3 \times 10^{-10}$. What is the pH of a 0.05 M aqueous solution of anilinium chloride (AnilHCI)?

(A) 11.0 (B) 3.0 (C) 5.3 (D) 8.7

- 21. Benzoic Acid (HBenz) has an acid dissociation constant of 1.6x10⁻⁹. What is the approximate pH a 0.20 M solution of aqueous sodium benzoate (NaBenz)?
 - (A) 9.3 (B) 3.0 (C) 11.0 (D) 4.7
- 22. The pH of a 0.10 M acetate (KAc) is 8.90 . The base equilibrium constnat, K_b , of the acetate ion (Ac⁻) is approximately:
 - (A) $1.6x10^{-5}$ (B) $6.3x10^{-10}$ (C) $1.6x10^{-17}$ (D) $4.8x10^{-7}$
- 23. If added to 2 L of 0.80 M NaOH, which one of the following would form a buffer?
 - (A) 2. L of 0.50 M Nitric Acid (HNO₃)
 - (B) 2. L of 1.0 M Lactic Acid (HLac)
 - (C) 2. L of 0.50 M Acetic Acid (HAc)
 - (D) 2. L of 1.0 M Potassium Acetate (KAc)

For #24 - #28: Tellurous acid, H_2 TeO₃, is a diprotic acid with acid dissociation constants, $K_a' = 3.0 \times 10^{-3}$ and $K_a'' = 2.0 \times 10^{-8}$

- 24. What is the pH of a solution containing 0.20 M KHTeO₃ and 0.50 M Na₂TeO₃?
 - (A) 8.10 (B) 7.30 (C) 2.92 (D) 2.12
- 25. What is the pH of a solution prepared by adding 0.35 mol of KOH to 2.0 L of 0.50 M H_2 TeO₃?
 - (A) 7.43 (B) 2.79 (C) 2.25 (D) 2.06
- 26. What is the pH of a solution prepared by adding 2 L of 0.70 M HCl to 2 L of 0.45 M Na₂TeO₃ ?
 - (A) 7.60 (B) 2.62 (C) 7.80 (D) 2.42
- 27. What is the pH of a 0.04 M solution of sodium tellurite, Na₂TeO₃?
 - (A) 10.15 (B) 9.45 (C) 11.25 (D) 3.85
- 28. What ratio of $[HTeO_3^-]/[TeO_3^2^-]$ will give a pH of 7.00
 - (A) 2.63 (B) 0.38 (C) 5.0 (D) 0.20

29. Consider the slightly soluble compound, silver carbonate, Ag_2CO_3 . The solubility product constant is K_{sp} = 6.2x10⁻¹².

What is the concentration of silver ions, $[Ag^+]$, in a solution containing Ag_2CO_3 and 0.1 M K₂CO₃(aq)?

(A) 1.6×10^{-5} M (B) 2.5×10^{-6} M (C) 3.9×10^{-6} M (D) 7.9×10^{-6} M

30. 600 mL of 0.30 M KOH(aq) are required to completely neutralize 400 mL of an aqueous H₂SO₄(aq) solution. What is the Molarity of the acid solution?

(A) 0.45 M (B) 0.36 M (C) 0.23 M (D) 0.90 M

- 31. For a hypothetical reaction, $A \rightleftharpoons B$, $\Delta H^{\circ} = +80$ kJ. The equilibrium constant for the reaction is 3.0×10^{-11} at 25 °C. ΔS° for this reaction is approximately:
 - (A) -470 J/K (B) +67 J/K (C) +470 J/K (D) -67 J/K
- 32. Consider the reaction: $2 \text{ NO}_2(g) \rightarrow N_2(g) + 2 \text{ O}_2(g)$, $\Delta H^\circ < 0$. This reaction is:
 - (A) Product Favored at all temperatures
 - (B) Reactant Favored at all temperatures
 - (C) Product Favored at low temperature
 - (D) Product Favored at high temperature
- 33. For the reaction, $2 N_2O_5(g) \Rightarrow 2 N_2(g) + 5 O_2(g)$, is $\Delta G^\circ = -236$ kJ at 25°C. What is the approximate value of the Equilibrium Constant for the **related reaction**: $N_2(g) + (5/2) O_2(g) \Rightarrow N_2O_5(g)$ at 25 °C?
 - (A) 2.0x10⁻²¹ (B) 2.4x10⁺⁴¹ (C) 2.0x10⁻⁴²
 - (D) None of the above
- 34. For the reaction, 2 K₂O(s) \rightarrow 4 K(s) + O₂(g, Δ H^o = +48 kJ and Δ S^o = +85 J/K. This reaction is ______ favored at temperatures **below** ______ °C (Celsius).
 - (A) Reactant , 292 °C (B) Reactant , 565 °C
 - (C) Product , 292 °C (D) Product , 565 °C
- 35. The enthalpy of vaporization of liquid benzene, C₆H₆(I), is +30.7 kJ/mol. What is the entropy change of the **surroundings**, Δ S_{surr}, for the condensation of 0.50 mol of benzene gas at the boiling point, 80 °C?
 - (A) -87. J/K (B) -192 J/K (C) +87 J/K (D) -43.5 J/K

- 36. The reaction, $A \rightarrow B$, is **exergonic** at 25 °C and the Entropy change is -95 J/K. What can be concluded about the Enthalpy change for this reaction?
 - (A) $\Delta H < 45.6 \text{ kJ}$ (B) $\Delta H > +28.3 \text{ J/K}$ (C) $\Delta H < -28.3 \text{ kJ}$

(D) ΔH cannot be determined without knowing the sign of ΔG

- 37. For the reaction, $N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$, the equilibrium constant, K = 220, at 240 °C. What is the approximate value of ΔG at 240 °C when $P(N_2) = P(H_2) = 0.10$ bar and $P(NH_3) = 0.50$ bar?
 - (A) +10.4 kJ (B) -7.4 kJ (C) -33.4 kJ (D) -56.4 kJ
- 38. For the electrochemical cell given by Cu|Cu²⁺||Au³⁺|Au, which of the following statements is/are correct?
 - (1) The cathode reaction is $Au^{3+} + 3e^{-} \rightarrow Au$
 - (2) Electrons flow from the Au electrode to the Cu electrode through an external circuit
 - (3) The anode reaction is $Cu \rightarrow Cu^{2+} + 2 e^{-}$
 - (4) If the half-cells are separated by a KNO₃ salt bridge, NO₃⁻ ions flow towards the Au electrode
 - (A) 1 & 3 (B) 1 & 2 & 4 (C) 1 & 2 & 3 (D) 2 & 3 & 4
- 39. Regarding the following reaction, which of the statements below is/are correct?

 $\begin{array}{rll} & \mbox{Fe}_2O_3(s) + 3 & \mbox{CO}(g) \rightarrow 2 \ \mbox{Fe} + 3 \ \mbox{CO}_2(g) \\ (1) & \mbox{Fe}_2O_3 \ \mbox{is the oxidizing agent} & (2) \ \mbox{Fe is reduced} \\ (3) & \mbox{6 electrons are transfered} & (4) \ \mbox{CO is oxidized} \\ (A) & \mbox{3 & } 4 & (B) & \mbox{1 & } 4 & (C) & \mbox{1 & } 8 & \mbox{4 & } (D) & \mbox{2 & } 8 & \mbox{3 & } 4 & (D) & \mbox{2 & } 8 & \mbox{3 & } 4 & (D) & \mbox{2 & } 8 & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{2 & } 8 & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{2 & } 8 & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{2 & } 8 & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{2 & } 8 & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{3 & } 8 & \mbox{4 & } (D) & \mbox{4 & } 8 & \mbox{4 & } (D) & \mbox{4 & } 8 & \mbox{4 & } (D) & \mbox{4 & } 8 & \mbox{4$

For #40 - #46: Use Table 1 (Standard Reduction Potentials), as necessary, near the top of the test.

- 40. For the redox reaction, 2 K⁺ + Cd \rightarrow 2 K + Cd²⁺, the cell potential is: E^o_{Cell} = -2.53 V. What is the reduction potential for Cd²⁺ ?
 - (A) +0.40 V (B) -5.46 V (C) -3.33 V (D) -0.40 V
- 41. Which of the following reactions are reactant favored?

(1)	$Hg^{2+} + 2 CI^{-} -$	→ Hg + Cl₂	(2) 2 Ag ⁺ + 2 I ⁻ \rightarrow 2 Ag	g + 2 l₂
(3)	Hg ²⁺ + 2 Fe ²⁺	ightarrow Hg + 2 Fe ³⁺	(4) Cu^{2+} + 2 Ag \rightarrow 2 A	∖g⁺ + Cu
(A)	2&3	(B) 1 & 4	(C) 3 only	(D) 1&3&4

- 42. What is the standard Gibbs Free Energy change for the electrochemical reaction, Ni²⁺ + 2 I⁻ → Ni + I₂ ?
 - (A) -56 kJ (B) +76 kJ (C) +56 kJ (D) +152 kJ

43. Consider the following electrochemical cell reaction (values in parentheses indicate Molar Concentrations): $Ag(s)|Ag^+(0.002 \text{ M})||Au^{3+}(3.00 \text{ M})|Au(s)$. For this reaction, $E^{o}_{cell} = +0.70 \text{ V}$. What is the cell potential, E_{cell} , at the concentrations shown in the reaction?

(A) +0.36 V (B) +0.87 V (C) +0.53 V (D) +1.21 V

44. For the redox reaction, 2 Al³⁺ + 3 Mn \rightarrow 2 Al + 3 Mn²⁺, the cell potential is: $E^{o}_{cell} = -0.48$ V. What is the equilibrium constant, K, for this reaction?

(A) 4.7x10⁻²⁵ (B) 7.8x10⁻⁹ (C) 4.5x10⁺⁴⁸ (D) 2.2x10⁻⁴⁹

45. The concentration of lead [Pb, M=207.2] in drinking water was determined using a concentration cell with 0.30 M lead(II) nitrate, Pb(NO₃)₂, in the reference cell (the cathode) and a sample of water with an unknown concentration of Pb²⁺(xx) in the sample cell (the anode).

In cell notation, this can be written as: $Pb(s)|Pb^{2+}(xx)||Pb^{2+}(0.20 \text{ M})|Pb(s)$.

The cell potential in the above concentration cell was measured to be +0.140 V. Therefore, the concentration of lead in the sample, in **milligrams per Liter** (mg/L) is approximately:

(A) 3.9 mg/L (B) 550 mg/L (C) 1.2 mg/L (D) 3.9x10⁻³ mg/L

46. The reaction for the reduction of O₂ in the environment and the reduction potetial for this reaction is given by: $O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^ E_{red}^o(O_2) = +0.40 V$

Based upon electrochemical considerations, which of the following metals would be expected to corrode (i.e. undergo oxidation) in the presence of O_2 and H_2O ? Ag, Sn, Cu, Hg

(A) Sn & Cu (B) Hg & Cu (C) Cu only (D) Ag & Hg

For #47 - #48: Use Table 2 (Some Reduction and Oxidation Potentials in Aqueous Solution) near the top of the test.

47. If aqueous Aluminum Iodide, AlI₃(aq) is placed in an electrolysis cell, and a voltage is applied, what will be the principal products of the electrolysis?

(A) AI , I ₂	(B) AI , O ₂ , H ⁺
(C) H_2 , OH^- , O_2 , H^+	(C) I ₂ , H ₂ , OH ⁻

48. If aqueous Zn(II) Fluoride, ZnF₂(aq) is placed in an electrolysis cell, and a voltage is applied, what will be the principal products of the electrolysis?

(A) Zn , O ₂ , H ⁺	(B) Zn , F ₂
(C) F_2 , H_2 , OH^-	(C) H_2 , OH^- , O_2 , H^+

- 49. A total of 850 kJ of energy was required to plate out Al(s) [M=27.] by electrolysis of a Al(NO₃)₃(aq) solution. The voltage was 8. Volts. Approximately how many grams of Al(s) were plated out by electrolysis?
 - (A) 89.2 g (B) 5.4 g (C) 9.9 g (D) 29.7 g
- 50. Approximately how long would it take to electroplate a metal surface with 0.15 g of Nickel [M=58.7] metal from a Ni(NO₃)₂(aq) solution with a current of 150 mA (milliAmps)?
 - (A) 32.9 min (B) 157 min (C) 27.5 min (D) 54.8 min
- 51. What nuclide will undergo electron capture to form Pt-195?
 - (A) Ir-196 (B) Ir-195 (C) Pt-196 (D) Au-195
- 52. Which of the following decay paths is the most likely one for Rn-222 ?
 - (A) ${}^{222}_{86}Ra \rightarrow {}^{0}_{+1}e + {}^{222}_{85}At$ (B) ${}^{222}_{86}Ra \rightarrow {}^{4}_{2}He + {}^{218}_{84}Po$ (C) ${}^{222}_{86}Ra \rightarrow {}^{0}_{-1}e + {}^{222}_{87}Fr$ (D) ${}^{222}_{86}Ra + {}^{0}_{-1}e \rightarrow {}^{222}_{85}At$
- 53. Consider the nuclear reaction, ${}^{252}_{98}Cf + X \rightarrow 3{}^{1}_{0}n + {}^{259}_{103}Lr$. What is X in this equation?
 - (A) ${}^{4}_{2}$ He (B) ${}^{10}_{5}$ B (C) ${}^{16}_{8}$ O (D) ${}^{8}_{5}$ B
- 54. Which of the following is/are likely decay paths for Mg-22. Stable isotopes in this range typically have N/Z = 1.05.
 - (1) ${}^{22}_{12}Mg \rightarrow {}^{0}_{-1}e + {}^{22}_{13}Al$ (2) ${}^{22}_{12}Mg \rightarrow {}^{0}_{+1}e + {}^{22}_{11}Na$ (3) ${}^{22}_{12}Mg + {}^{0}_{-1}e \rightarrow {}^{22}_{11}Na$ (4) ${}^{22}_{12}Mg \rightarrow {}^{4}_{2}He + {}^{18}_{10}Ne$
 - (A) 1 & 4 (B) 4 only (C) 2 & 3 (D) 1 & 2

Two more MC questions on next page.

55. Use the Molar Masses below to calculate the approximate Binding Energy per Nucleon (Eb/N) of Pb-208.

 $m(_{1}H) = 1.008 \text{ g/mol}$, $m(_{0}n) = 1.009 \text{ g/mol}$, $m(_{82}^{208}Pb) = 207.977 \text{ g/mol}$

- (A) 1.6x10¹⁴ kJ/mol (B) 7.8x10¹¹ kJ/mol
- (C) 7.8x10⁸ kJ/mol (D) 1.6x10¹¹ kJ/mol
- 56. One nuclear fusion reaction involves the reaction of a deuterium and tritium nucleus to form helium: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$. This reaction is highly exothermic because:
 - (A) The n-n repulsions in deuterium and tritium are higher than in helium
 - (B) Helium has a higher Binding Energy per nucleon than deuterium or tritium
 - (C) The p-p attractions are greater in helium than in deuterium or tritoi,
 - (D) Helium has a lower Binding Energy per nucleon than deuterium or tritium