CHEM 1423 Chapters 21 Homework Answers

TEXTBOOK HOMEWORK

- **21.5** (a) Cl^{-} is oxidized
 - (b) MnO_4^- is reduced
 - (c) MnO_4^- is the oxidizing agent
 - (d) Cl⁻ is the reducing agent
 - (e) Electrons flow from Cl^- which is losing electrons, to MnO_4^- which is gaining electrons
 - (f) $8 H_2SO_4(aq) + 2 KMnO_4(aq) + 10 KCl(aq)$ $2 MnSO_4 + 5 Cl_2(g) + 8 H_2O(l) + 6 K_2SO_4(aq)$

21.9 (a)
$$4 \operatorname{NO}_{3}^{-} + 4H^{+} + 4Sb \rightarrow 4NO + 2H_{2}O + Sb_{4}O_{6}$$

(b) $5BiO_{3}^{-} + 14H^{+} + 2Mn^{2+} \rightarrow 5Bi^{3+} + 7H_{2}O + 2MnO_{4}^{-}$

(c) $Pb(OH)_3^- + 2Fe(OH)_2 \rightarrow Pb + 2Fe(OH)_3 + OH^-$

21.27 (a)
Red:
$$2SO_3^{2-} + 3H_2O + 4e^- \rightarrow S_2O_3^{2-} + 6OH^-$$

 $Oxid: Se^{2-} \rightarrow Se + 2e^-$
(b) $E_{red}^o[Se] = -E_{ox}^o[Se^{2-}] = -0.92V$

(a)

$$2Ag + Cu^{2+} \rightarrow 2Ag^{+} + Cu$$

$$E_{cell}^{o} = E_{red}^{o}(Cu^{2+}) + E_{oxid}^{o}(Ag) = E_{red}^{o}(Cu^{2+}) - E_{red}^{o}(Ag^{+})$$

$$= +0.34 - 0.80 = -0.46V$$
This reaction is NOT spontaneous.

(b)
$$Cr_2O_7^{2^-} + 14H^+ + 3Cd \rightarrow 2Cr^{3^+} + 7H_2O + 3Cd^{2^+}$$

 $E_{cell}^o = E_{red}^o(Cr_2O_7^{2^-}) + E_{oxid}^o(Cd) = E_{red}^o(Cr_2O_7^{2^-}) - E_{red}^o(Cd^{2^+})$
 $= +1.33 - (-0.40) = +1.73V$
This reaction IS Spontaneous

(c)

$$Ni^{2+} + Pb \rightarrow Ni + Pb^{2+}$$

$$E_{cell}^{o} = E_{red}^{o} (Ni^{2+}) + E_{oxid}^{o} (Pb) = E_{red}^{o} (Ni^{2+}) - E_{red}^{o} (Pb^{2+})$$

$$= -0.25 - (-0.13) = -0.12V$$

This reaction is NOT spontaneous.

- **21.36** (a) N₂O is reduced, Au is oxidized. $N_2O + 2H^+ + 2Au \rightarrow 2N_2 + 2H_2O + 2Au^+$ $E_{cell}^o = E_{red}^o(N_2O) + E_{oxid}^o(Au) = E_{red}^o(N_2O) - E_{red}^o(Au^+)$ = +1.77 - (+1.69) = +0.08V
 - (b) N₂O is reduced, Cr is oxidized $3N_2O + 6H^+ + 2Cr \rightarrow 3N_2 + 3H_2O + 2Cr^{2+}$

$$E_{cell}^{o} = E_{red}^{o}(N_2O) + E_{oxid}^{o}(Cr) = E_{red}^{o}(N_2O) - E_{red}^{o}(Cr^{2+})$$

= +1.77 - (-0.74) = +2.51V

(c) Au⁺ is reduced, Cr is oxidized $3Au^+ + Cr \rightarrow 3Au + Cr^{2+}$

$$E_{cell}^{o} = E_{red}^{o}(Au^{+}) + E_{oxid}^{o}(Cr) = E_{red}^{o}(N_{2}O) - E_{red}^{o}(Cr^{2+})$$

= +1.69 - (-0.74) = +2.43V

Oxidizing Agents: $N_2O > Au^+ > Cr^{3+}$

Reducing Agents: $Cr > Au > N_2$

- **21.45** (a) $K = 3.0x10^{35}$ (b) $K = 4x10^{-31}$
- **21.50** $E^{o}_{cell} = -0.035 V$ $\Box G^{o} = +6.8 kJ$
- **21.52** $[Pb^{2+}] = 3.5x10^{-21} M$
- **21.76** (a) $n(e^{-}) = 3.75 \text{ mol } e^{-}$ (b) $q = 3.62 \times 10^{5} \text{ C}$ (c) I = 28.7 A
- **21.80** $t = 9.2 \times 10^3 \text{ s}$
- **21.84** 62.5 g Zn

SUPPLEMENTARY HOMEWORK

- **S1**. B
- **S2.** B
- **S3.** D
- **S4.** $\Box G^{\circ} = -86.3 \text{ kJ}$, $K = 1.3 \times 10^{15}$
- **S5.** $E^{o}_{cell} = 1.22 V$
- **S6.** $E^{o}_{cell} = 1.45 V$
- **S7.** $[Zn^{2+}] = 30.3 \text{ mg/L}$
- **S8.** $K_{sp} = 3.4 \times 10^{-13}$
- **S9.** $K_{sp} = 8.7 \times 10^{-17}$
- **S10.** 71 g Cu

S11.

- (a) Molten AlF₃(liq) Cathode (-) Electrode: Al³⁺ + 3 e⁻ I Al $E^{o}_{red} = -1.66 V$ Anode (+) Electrode: 2 F⁻ I $F_2 + 2 e^ E^{o}_{ox} = -2.87 V$ $E_{cell}^{o} = -1.66 - 2.87 = -4.53 V$ - Therefore, Voltage > +4.53 V required for electrolysis Net Reaction: 2 Al³⁺ + 6 F⁻ I 2 Al + 3 F₂
- (b) Molten NaI(liq) + Molten ZnBr₂(liq) Cathode (-) Electrode: Zn²⁺ + 2 e⁻ I Zn $E^{o}_{red} = -0.76 V$ Zn²⁺ reduced because it has a smaller negative reduction potential than Na⁺ Anode (+) Electrode: 2 I⁻ I I₂ + 2 e⁻ $E^{o}_{ox} = -0.54 V$ I⁻ oxidized because it has a smaller negative oxidation potential than Br⁻ $E_{cell}^{o} = -0.76 - 0.54 = -1.30 V$ - Therefore Voltage > +1.30 V required for electrolysis Net Reaction: Zn²⁺ + 2 I⁻ I Zn + I₂

(c) An aqueous solution of $MnF_2(aq)$

Cathode (-) Electrode: $2 H_2O + 2 e^{-1} H_2 + 2 OH^{-1} E_{red}^{0} = -0.83 V$ H_2O is reduced because it has a smaller negative reduction potential than Mn^{2+} Anode (+) Electrode: $2 H_2O = O_2 + 4 H^{+} + 4 e^{-1} E_{ox}^{0} = -1.23 V$ H_2O is oxidized because it has a smaller negative oxidation potential than F⁻ $E_{cell}^{0} = -0.83 - 1.23 = -2.06 V$ - Therefore Voltage > 2.06 V required for electrolysis Net Reaction: $2 H_2O = 2 H_2 + O_2$ **Note:** Get cancellation of some waters when combine the H⁺ and OH⁻ products to H₂O

- (d) An aqueous solution of FeI₂(aq) Cathode (-) Electrode: $Fe^{2+} + 2e^{-}$ [] Fe $E_{red}^{o} = -0.44 \text{ V}$ Fe^{2+} is reduced because it has a smaller negative reduction potential than H₂O Anode (+) Electrode: $2I^{-}$ [] $I_{2} + 2e^{-}$ $E_{ox}^{o} = -0.54 \text{ V}$ I is oxidized because it has a smaller negative oxidation potential than H₂O $E_{cell}^{o} = -0.44 - 0.54 = -0.98 \text{ V}$ - Therefore Voltage > +0.98 V required for electrolysis Net Reaction: $Fe^{2+} + 2I^{-}$ [] $Fe + I_{2}$
- (e) An aqueous solution of NaI(aq)

Cathode (-) Electrode: $2 H_2O + 2 e^- \square H_2 + 2 OH^ E_{red}^o = -0.83 V$ H₂O is reduced because it has a smaller negative reduction potential than Na⁺

Anode (+) Electrode: $2 \text{ I}^{-} \square \text{ I}_2 + 2 \text{ e}^{-}$ $E_{\text{ox}}^{\circ} = -0.54 \text{ V}$

I⁻ is oxidized because it has a smaller negative oxidation potential than H₂O $E_{cell}^{o} = -0.83 - 0.54 \text{ V} = -1.37 \text{ V}$ - Therefore Voltage > 1.37 V is required for electrolysis Net Reaction: 2 H₂O + 2 I⁻ I H₂ + 2 OH⁻ + I₂

(f) An aqueous solution of $ZnF_2(aq)$ Cathode (-) Electrode: $Zn^{2+} + 2 e^{-1}$ Zn $E_{red}^{o} = -0.76 V$ Zn is reduced because it has a smaller negative reduction potential than H₂O Anode (+) Electrode: $2 H_2O$ [] $O_2 + 4 H^+ + 4 e^{-1}$ $E_{ox}^{o} = -1.23 V$ H₂O is oxidized because it has a smaller negative oxidation potential than F⁻ $E_{cell}^{o} = -0.76 - 1.23 = -1.99 V$ - Therefore Voltage > 1.99 V is required for electrolysis Net Reaction: $2 Zn^{2+} + 2 H_2O$ [] $2 Zn + O_2 + 4 H^+$