CHEM 1423

Chapters 17

Homework Solutions

TEXTBOOK HOMEWORK

$17.292 \mathrm{HBr}(\mathrm{g}) \square \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
$\mathrm{P}_{\mathrm{HBr}}=0.2 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2}=0.01 \mathrm{~atm}, \mathrm{P}_{\mathrm{Br} 2}=0.01 \mathrm{~atm}$
$Q=\frac{P_{H_{2}} \cdot P_{B r_{2}}}{P_{\mathrm{HBr}}^{2}}=\frac{(0.01)(0.01)}{(0.2)^{2}}=2.5 \times 10^{-3}>K_{P}\left(4.18 \times 10^{-9}\right)$
Because $\mathrm{Q} \neq \mathrm{K}_{\mathrm{P}}$, the reaction is not at equilibrium.
Because $\mathrm{Q}>\mathrm{K}_{\mathrm{P}}$, the reaction will move towards the left until $\mathrm{Q}=\mathrm{K}_{\mathrm{P}}$
$\left.17.382 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})\right] 2 \mathrm{NOCl}(\mathrm{g}) \mathrm{K}_{\mathrm{P}}=6.5 \times 10^{4}, \mathrm{P}_{\mathrm{NO}}=0.35 \mathrm{~atm}, \mathrm{P}_{\mathrm{Cl} 2}=0.10 \mathrm{~atm}$
$K_{P}=6.5 \times 10^{4}=\frac{P_{\mathrm{NOCl}}^{2}}{P_{\mathrm{NO}}^{2} \cdot P_{\mathrm{Cl}_{2}}}=\frac{P_{\mathrm{NOCl}}^{2}}{(0.35)^{2}(0.10)}=\frac{P_{\mathrm{NOCl}}^{2}}{1.25 \times 10^{-2}}$
$P_{\text {NOCl }}^{2}=\left(6.5 \times 10^{4}\right)\left(1.225 \times 10^{-2}\right)=796.3$
$P_{\text {NOCl }}=\sqrt{796.3}=28.2 \mathrm{~atm}$
$\left.17.412 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right] 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=9.3 \times 10^{-8},\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{o}}=0.45 \mathrm{~mol} / 3 \mathrm{~L}=0.15 \mathrm{M}$

	$\mathrm{H}_{2} \mathrm{~S}$	H_{2}	$\mathrm{~S}_{2}$
Initial	0.15	0	0
Change	-2 x	+2 x	+x
Equilibrium	$0.15-2 \mathrm{x}$	2 x	x

As stated in the problem (see outline), one may assume that very little $\mathrm{H}_{2} \mathrm{~S}$ will decompose (because $\mathbf{K}_{\mathbf{c}}$ is very small). Therefore, at equilibrium, $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.15-2 \mathrm{x} \approx 0.15 \mathrm{M}$

$$
\begin{aligned}
& K_{c}=9.3 \times 10^{-8}=\frac{\left[H_{2}\right]^{2}\left[S_{2}\right]}{\left[H_{2} S\right]^{2}}=\frac{(2 x)^{2}(x)}{(0.15)^{2}}=177.8 x^{3} \\
& x^{3}=\frac{9.3 \times 10^{-8}}{177.8}=5.23 \times 10^{-10} \\
& x=\left(5.23 \times 10^{-10}\right)^{1 / 3}=8.06 \times 10^{-4} \mathrm{M} \\
& {\left[\mathrm{H}_{2}\right]=2 \mathrm{x}=1.61 \times 10^{-3} \mathrm{M} \quad\left[\mathrm{~S}_{2}\right]=\mathrm{x}=8.06 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

17.44 $2 \mathrm{ICl}(\mathrm{g})] \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.110,[\mathrm{ICl}]_{0}=0.50 \mathrm{~mol} / 5.0 \mathrm{~L}=0.10 \mathrm{M}$

	ICl	I_{2}	Cl_{2}
Initial	0.10	0	0
Change	-2 x	+x	+x
Equilibrium	$0.10-2 \mathrm{x}$	x	x

Note: Because it is not stated in the problem, you may NOT assume that very little $\mathrm{H}_{2} \mathrm{~S}$ will decompose.
$K_{c}=0.110=\frac{\left[I_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{ICl}]^{2}}=\frac{(x)(x)}{(0.10-2 x)^{2}}=\frac{x^{2}}{(0.10-2 x)^{2}}$
Take square root of both sides
$\sqrt{0.110}=0.332=\frac{x}{0.10-2 x}$
$0.332(0.10-2 x)=x$
$0.0332-0.664 x=x$
$1.664 x=0.0332$
$x=0.01995=0.020$
$\left[\mathrm{I}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=\mathrm{x}=0.020 \mathrm{M} \quad[\mathrm{ICl}=0.10-2 \mathrm{x}=0.10-2(0.02)=0.060 \mathrm{M}$
$17.464 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\left[\mathrm{NH}_{3}\right]_{\mathrm{o}}=\left[\mathrm{O}_{2}\right]_{\mathrm{o}}=0.015 \mathrm{~mol} / 1.00 \mathrm{~L}=0.015 \mathrm{M},\left[\mathrm{N}_{2}\right]_{\text {equil }}=1.96 \times 10^{-3} \mathrm{M}$
Let's make an ICE Table

	NH_{3}	O_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
Initial	0.015	0.015	0	0
Change	-4 x	-3 x	+2 x	+6 x
Equilibrium	$0.015-4 \mathrm{x}$	$0.015-3 \mathrm{x}$	2 x	6 x

We can determine the value of x by using the equilibrium concentration, $\left[\mathrm{N}_{2}\right]$.
$\left[\mathrm{N}_{2}\right]_{\text {equil }}=2 \mathrm{x}=1.96 \times 10^{-3} \square \mathrm{x}=9.80 \times 10^{-4}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=6 \mathrm{x}=5.88 \times 10^{-3},\left[\mathrm{NH}_{3}\right]=0.015-4 \mathrm{x}=1.108 \times 10^{-2},\left[\mathrm{O}_{2}\right]=0.015-3 \mathrm{x}=1.206 \times 10^{-2}$

$$
K_{c}=\frac{\left[N_{2}\right]^{2}\left[H_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{3}}=\frac{\left(1.96 \times 10^{-3}\right)^{2}\left(5.88 \times 10^{-3}\right)^{6}}{\left(1.108 \times 10^{-2}\right)^{4}\left(1.206 \times 10^{-2}\right)^{3}}=6.01 \times 10^{-6} \approx 6.0 \times 10^{-6}
$$

17.47 $\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g})] \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{P}}=0.403$

Note: We can ignore $\mathrm{FeO}(\mathrm{s})$ and $\mathrm{Fe}(\mathrm{s})$. Only gases need be considered.

	$\mathrm{FeO}(\mathrm{s})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{Fe}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$
Initial	--	1.00 atm	0	0
Change	--	-x	--	+x
Equilibrium	--	$1.00-\mathrm{x}$	--	x

$$
\begin{aligned}
& K_{P}=0.403=\frac{P_{\mathrm{CO}_{2}}}{P_{\mathrm{CO}}}=\frac{x}{1.00-x} \\
& 0.403(1.00-x)=x \\
& 0.403-0.403 x=x \\
& 1.403 x=0.403 \\
& x=\frac{0.403}{1.403}=0.287 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{CO}}=1.00-\mathrm{x}=1.00-0.287=0.713 \mathrm{~atm}, \mathrm{P}_{\mathrm{CO} 2}=\mathrm{x}=0.287 \mathrm{~atm}
\end{aligned}
$$

17.56 An increase in volume results in a decrease in pressure. Therefore, the equilibrium will move in the direction which increases the number of moles of gas. However, there is no change in the equilibrium constant.
(a) $\mathrm{F}_{2}(\mathrm{~g}) \quad 2 \mathrm{~F}(\mathrm{~g})$: Equil. will move to the right. More F and less F_{2}. No change in K
(b) $\left.2 \mathrm{CH}_{4}(\mathrm{~g})\right] \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$: Equil. will move to the right. More $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} and less CH_{4}. No change in K
17.61 When the temperature is decreased, the equilibrium will move in the exothermic direction. K will change accordingly.
(a) Exothermic reaction $\left(\square \mathrm{H}_{\mathrm{rxn}}^{0}=-151 \mathrm{~kJ}\right)$. Equilibrium will move to right and K will increase.
(b) Exothermic reaction $\left(\square \mathrm{H}^{\mathrm{r} \times \mathrm{ra}}=-451 \mathrm{~kJ}\right)$. Equilibrium will move to right and K will increase.
(c) Exothermic reaction. Equilibrium will move to right and K will increase.
(d) Endothermic reaction. Equilibrium will move to left and K will decrease.

