CHEM 1423

Chapters 18
Homework Solutions

TEXTBOOK HOMEWORK

18．15 Lower $\left[\mathrm{H}^{+}\right] 』$ higher pH
（a） $\mathrm{Ka}=4 \times 10^{-5}$ ：Lower $\mathrm{Ka} 』$ lower $\left[\mathrm{H}^{+}\right]$
（b） $\mathrm{pKa}=3.5$ ：Higher $\mathrm{pKa} \rrbracket$ lower $\mathrm{Ka} \rrbracket$ lower $\left[\mathrm{H}^{+}\right]$
（c） 0.01 M ：lower concentration \rrbracket lower $\left[\mathrm{H}^{+}\right]$
（d）Weaker Acid：lower $\left[\mathrm{H}^{+}\right]$
（e） 0.01 M Base：Base has lower $\left[\mathrm{H}^{+}\right]$
（f） $\mathrm{pOH}=6$ ：Has higher $\mathrm{pH}(8)$
18.16 （a）$\left[\mathrm{OH}^{-}\right]=0.0111 \mathrm{M} 』 p O H=-\log (0.0111)=1.95 \rightarrow p H=14-1.95 \approx 12.05$ Basic
（b）$\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-3} \mathrm{M} 』 p H=-\log \left(1.35 \times 10^{-3}\right)=2.87 \rightarrow p O H=14-2.87 \approx 11.13$ Acidic
18.18 （a） $\mathrm{pH}=9.85 』 \mathrm{pOH}=14-9.85=4.15,\left[H^{+}\right]=10^{-p H}=10^{-9.85}=1.4 \times 10^{-10} \mathrm{M}$ $\left[\mathrm{OH}^{-}\right]=10^{-p O H}=10^{-4.15}=7.1 \times 10^{-5} \mathrm{M}$
（b） $\mathrm{pOH}=9.43 』 \mathrm{pH}=14-9.43=4.57,\left[H^{+}\right]=10^{-p H}=10^{-4.57}=2.7 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9.43}=3.7 \times 10^{-10} \mathrm{M}$

18．20 Goal：Calculate initial number of moles of H^{+}and final number of moles of H^{+}．The difference is the number of moles of OH^{-}which must be added．
$\left[H^{+}\right]_{\text {init }}=10^{-p H_{\text {init }}}=10^{-4.52}=3.020 \times 10^{-5} \mathrm{M}$
$n\left[\mathrm{H}^{+}\right]_{\text {init }}=\left[\mathrm{H}^{+}\right]_{\text {init }} V=3.020 \times 10^{-5} \mathrm{M}(5.60 \mathrm{~L})=1.691 \times 10^{-4} \mathrm{~mol}$
$\left[\mathrm{H}^{+}\right]_{f i n}=10^{-p H_{f n}}=10^{-5.25}=5.623 \times 10^{-6} \mathrm{M}$
$n\left[\mathrm{H}^{+}\right]_{f i n}=\left[\mathrm{H}^{+}\right]_{f i n} V=5.623 \times 10^{-6} M(5.60 \mathrm{~L})=3.15 \times 10^{-5} \mathrm{~mol}$
$\Delta \mathrm{n}\left[\mathrm{H}^{+}\right]=n\left[\mathrm{H}^{+}\right]_{\text {fin }}-n\left[H^{+}\right]_{\text {init }}=3.149 \times 10^{-5}-1.691 \times 10^{-4}=-1.38 \times 10^{-4} \mathrm{~mol}$
In order to remove 1.38×10^{-4} moles of H^{+}from the solution，we must add 1.38×10^{-4} moles of $\left[\mathrm{OH}^{-}\right]$．
18.45 $H A \stackrel{K_{a}}{\rightleftarrows} H^{+}+A^{-}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=\mathrm{x}=10^{-\mathrm{pH}}=10^{-4.88}=1.32 \times 10^{-5} \mathrm{M},[\mathrm{HA}]=0.035-\mathrm{x} \approx 0.035$
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{\left(1.32 \times 10^{-5}\right)^{2}}{0.035}=4.97 \times 10^{-9} \approx 5.0 \times 10^{-9}$
$18.48 \mathrm{pKa}=2.87 』 K_{a}=10^{-p K a}=10^{-2.87}=1.35 \times 10^{-3}$
$\mathrm{ClCH}_{2} \mathrm{COOH} \stackrel{K_{a}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{ClCH}_{2} \mathrm{COO}^{-}$
$\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]=\mathrm{x},\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]=1.25-\mathrm{x} \approx 1.25 \mathrm{M}^{* *}$
$K_{a}=1.35 \times 10^{-3}=\frac{\left[H^{+}\right]\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]}=\frac{x^{2}}{1.25}$
$x^{2}=1.35 \times 10^{-3}(1.25)=1.69 \times 10^{-3} \rightarrow x=4.11 \times 10^{-2} \approx 0.041 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]=\mathrm{x}=0.041 \mathrm{M},\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]=1.25-\mathrm{x}=1.21 \mathrm{M} \approx 1.25 \mathrm{M}$ $p H=-\log (0.041) \approx 1.4$
$18.50 \quad H A \stackrel{K_{a}}{\rightleftarrows} H^{+}+A^{-}[\mathrm{HA}]_{0}=0.20 \mathrm{M}, 3 \%$ dissociated
(a) $\left[\mathrm{H}^{+}\right],\left[\mathbf{O H}^{-}\right], \mathbf{p H}, \mathbf{p O H}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=\frac{3}{100}[H A]_{o}=\frac{3}{100}(0.20 \mathrm{M})=0.006 \mathrm{M}$
$[\mathrm{HA}]=\frac{97}{100}[H A]_{o}=\frac{97}{100}(0.20 M)=0.194 M$
$p H=-\log (0.006)=2.22$
$p O H=14-2.22=11.78$
$\left[O H^{-}\right]=10^{-11.78}=1.66 \times 10^{-12} M \approx 1.7 \times 10^{-12} \mathrm{M}$
(b) K_{a}

$$
K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{A}^{-}\right]}{[H A]}=\frac{(0.006)(0.006)}{0.194}=1.86 \times 10^{-4} \approx 1.9 \times 10^{-4}
$$

18.54 For convenience, let's call $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4} \equiv$ HAsp: HAsp $\underset{ }{\stackrel{K_{a}}{\rightleftarrows} H^{+}+\text {Asp }^{-}, \mathrm{K}_{\mathrm{a}}=3.6 \times 10^{-4}}$ $\left[\mathrm{H}^{+}\right]=\left[\mathrm{Asp}^{-}\right]=\mathrm{x},[\mathrm{HAsp}]=0.018-\mathrm{x} \approx 0.018$

$$
\begin{aligned}
& K_{a}=3.6 \times 10^{-4}=\frac{\left[H^{+}\right]\left[\mathrm{Asp}^{-}\right]}{[\mathrm{HAsp}]}=\frac{x^{2}}{0.018} \\
& x^{2}=3.6 \times 10^{-4}(0.018)=6.48 \times 10^{-6} \rightarrow x=2.55 \times 10^{-3}=\left[H^{+}\right] \\
& p H=-\log \left(2.55 \times 10^{-3}\right)=2.59 \approx 2.6
\end{aligned}
$$

18.55 Formic Acid: HCOOH. For convenience, we'll call this HForm.
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$. This value was looked up in a table. It would be given to you on a test.
HForm $\stackrel{K_{a}}{\rightleftarrows} H^{+}+$Form $^{-}$
$\left[\mathrm{H}^{+}\right]=\left[\right.$Form $\left.^{-}\right]=\mathrm{x},[$ HForm $]=0.75-\mathrm{x} \approx 0.75$

$x^{2}=1.8 \times 10^{-4}(0.75)=1.35 \times 10^{-4} \rightarrow x=1.16 \times 10^{-2}=\left[\mathrm{Form}^{-}\right]$
The concentration of the dissociated species is [Form ${ }^{-}$]. Therefore, the percent
dissociation is given by: $\%$ Dissoc $=\frac{\left[\mathrm{Form}^{-}\right]}{[\text {HForm }]_{o}} \times 100=\frac{1.16 \times 10^{-2}}{0.75} \times 100=1.55 \% \approx 1.5 \%$
18.65 (a) KCN : The salt dissociates completely to $\mathrm{K}^{+}(\mathrm{aq})$ and $\mathrm{CN}^{-}(\mathrm{aq})$.
$\mathrm{KCN} 』 \mathrm{~K}^{+}+\mathrm{CN}^{-}(0.15 \mathrm{M})$. The K^{+}is unimportant because it is the conjugate acid of the infiniely strong base, KOH , and does not react with water.
CN^{-}is the conjugate base of the weak acid, $\mathrm{HCN}, \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$
(Appendix C of the text). You would be given the value on a test.
Note: Because you have just put the conjugate base of a weak acid in solution, you know that your solution should have $\mathbf{p H}>7$.
CN^{-}reacts with water according to: $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b}}{\rightleftarrows} \mathrm{HCN}+\mathrm{OH}^{-}$
$[\mathrm{HCN}]=\left[\mathrm{OH}^{-}\right]=\mathrm{x},\left[\mathrm{CN}^{-}\right]=0.15-\mathrm{x} \approx 0.15 \mathrm{M}$
We get $\mathrm{K}_{\mathrm{b}}\left(\mathrm{CN}^{+}\right)$from:

$$
\begin{aligned}
& K_{a} K_{b}=K_{w} \rightarrow K_{b}\left(C N^{-}\right)=\frac{K_{w}}{K_{a}(H C N)}=\frac{1 \times 10^{-14}}{6.2 \times 10^{-10}}=1.61 \times 10^{-5} \\
& K_{b}=\frac{[H C N]\left[\mathrm{OH}^{-}\right]}{\left[C N^{-}\right]} \rightarrow 1.61 \times 10^{-5}=\frac{x \cdot x}{0.15} \\
& x^{2}=(0.15)\left(1.61 \times 10^{-5}\right)=2.42 \times 10^{-6} \rightarrow x=1.55 \times 10^{-3}=\left[O H^{-}\right] \\
& p O H=-\log \left(\left[O H^{-}\right]=-\log \left(1.55 \times 10^{-3}\right)=2.81\right. \\
& p H=14-2.81=11.19 \approx 11.2
\end{aligned}
$$

(b) Triethylammonium Chloride, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NHCl}$. Let's call this $\mathrm{Et}_{3} \mathrm{NHCl}$ for convenience.
$\mathrm{Et}_{3} \mathrm{NHCl} 』 \mathrm{Et}_{3} \mathrm{NH}^{+}(0.40 \mathrm{M})+\mathrm{Cl}^{-}$. The Cl^{-}is unimportant because it is the conjugate base of the infinitely strong acid, HCl .
$\mathrm{Et}_{3} \mathrm{NH}^{+}$is the conjugate acid of the weak base, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=5.2 \times 10^{-4}$ (Appendix C of the text). You would be given this value on a test.
Note: Because you have just put the conjugate base of a weak acid in solution, you know that your solution should have $\mathbf{p H}>7$.
$\mathrm{Et}_{3} \mathrm{NH}^{+}$dissociates according to: $E t_{3} \mathrm{NH}^{+} \stackrel{K_{x}}{\rightleftarrows} H^{+}+E t_{3} N$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{Et}_{3} \mathrm{~N}\right]=\mathrm{x},\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right]=0.40-\mathrm{x} \approx 0.40$
We get $\mathrm{K}_{\mathrm{a}}\left(\mathrm{Et}_{3} \mathrm{NH}^{+}\right)$from:

$$
\begin{aligned}
& K_{a} K_{b}=K_{w} \rightarrow K_{a}\left(\mathrm{Et}_{3} \mathrm{NH}^{+}\right)=\frac{K_{w}}{K_{b}\left(\mathrm{Et}_{3} \mathrm{~N}\right)}=\frac{1 \times 10^{-14}}{5.2 \times 10^{-4}}=1.92 \times 10^{-11} \\
& K_{a}=\frac{\left[H^{+}\left[\mathrm{Et}_{3} N\right]\right.}{\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right]} \rightarrow 1.92 \times 10^{-11}=\frac{x \cdot x}{0.40} \\
& x^{2}=(0.40)\left(1.92 \times 10^{-11}\right)=7.69 \times 10^{-12} \rightarrow x=2.77 \times 10^{-6}=\left[H^{+}\right] \\
& \mathrm{pH}=-\log \left(2.77 \times 10^{-6}\right)=5.56 \approx 5.6
\end{aligned}
$$

18.67 NaClO dissociates completely into $\mathrm{Na}^{+}+\mathrm{ClO}^{-}$. Because Na^{+}is the conjugate acid of the infinitely strong base, NaOH , it does nothing in solution. On the other hand, ClO^{-}is the conjugate base of the weak acid, $\mathrm{HClO} . \mathrm{K}_{\mathrm{a}}=2.9 \times 10^{-8}$ (Appendix C of the text). You would be given this value on a test.

Let's go ahead and get K_{b}, which we will need in the problem.
$K_{a} K_{b}=K_{w} \rightarrow K_{b}\left(\mathrm{ClO}^{-}\right)=\frac{K_{w}}{K_{a}(\mathrm{HClO})}=\frac{1 \times 10^{-14}}{2.9 \times 10^{-8}}=3.45 \times 10^{-7}$
Strategy: (1) We will use the mass percent of NaClO and the density of the solution to calculate the initial concentration, $\left[\mathrm{ClO}^{-}\right]$. (2) We will use the base equilibrium equation to determine $\left[\mathrm{OH}^{-}\right]$and $\mathrm{pOH} / \mathrm{pH}$.

(1) $\left[\mathrm{ClO}^{-}\right]$

Assume 1.0 $\mathrm{L}=1000 \mathrm{~mL}$ of solution. Because $\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$, we have 1,000 grams. $\mathrm{M}(\mathrm{NaClO})=74.5 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \operatorname{mass}(\mathrm{NaClO})=\frac{6.5}{100}(1,000 \mathrm{~g})=65.0 \mathrm{~g} \\
& n(\mathrm{NaClO})=65.0 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{74.5 \mathrm{~g}}=0.87 \mathrm{~mol}
\end{aligned}
$$

Because NaClO dissociates completely to $\mathrm{ClO}^{-}\left(+\mathrm{Na}^{+}\right.$, which is unimportant), $\mathrm{n}\left(\mathrm{ClO}^{-}\right)=0.87 \mathrm{~mol}$. Therefore, $\left[\mathrm{ClO}^{-}\right]_{\mathrm{o}}=0.87 \mathrm{~mol} / 1.0 \mathrm{~L}=0.87 \mathrm{M}$.

(2) Determine [OH^{-}], $\mathrm{pOH}, \mathrm{pH}$

ClO^{-}reacts with water according to: $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b}}{\rightleftarrows} \mathrm{HClO}+\mathrm{OH}^{-}$
$[\mathrm{HClO}]=\left[\mathrm{OH}^{-}\right]=\mathrm{x},\left[\mathrm{ClO}^{-}\right]=0.87-\mathrm{x} \approx 0.87 \mathrm{M}$

$$
\begin{aligned}
K_{b}= & \frac{[\mathrm{HClO}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClO}^{-}\right]} \rightarrow 3.45 \times 10^{-7}=\frac{x \cdot x}{0.87} \\
x^{2}= & (0.87)\left(3.45 \times 10^{-7}\right)=3.00 \times 10^{-7} \rightarrow x=5.48 \times 10^{-4}=\left[\mathrm{OH}^{-}\right] \\
& p O H=-\log \left(\left[\mathrm{OH}^{-}\right]=-\log \left(5.48 \times 10^{-4}\right)=3.26\right. \\
& p H=14-3.26=10.74 \approx 10.7
\end{aligned}
$$

