CHEM 1423 Chapters 19 Homework Solutions

TEXTBOOK HOMEWORK

19.12
$$C_6H_5ONa \parallel Na^+ + C_6H_5O^-(1.3 \text{ M}), C_6H_5OH(1.2 \text{ M}), pK_a = 10.00$$

$$pH = pK_a + \log\left(\frac{[C_6H_5O^-]}{[C_6H_5OH]}\right) = 10.00 + \log\left(\frac{1.3}{1.2}\right) = 10.03$$

19.15 CH₃NH₃Cl
$$\parallel$$
 Cl⁻ + CH₃NH₃⁺(0.60 M), CH₃NH₂(0.50 M)

$$pK_b(CH_3NH_2) = 3.35 \parallel pK_a(CH_3NH_3^+) = 14. - 3.35 = 10.65$$

$$pH = pK_a + \log\left(\frac{[CH_3NH_2]}{[CH_3NH_3^+]}\right) = 10.65 + \log\left(\frac{0.50}{0.60}\right) = 10.57$$

19.16 HPr
$$_$$
 H⁺ + Pr⁻, $K_a = 1.3 \times 10^{-5} \parallel pK_a = 4.89$, pH = 5.44 $pH = pK_a + \log \left(\frac{[Pr^-]}{[HPr]} \right)$ $5.44 = 4.89 + \log \left(\frac{[Pr^-]}{[HPr]} \right)$ $\log \left(\frac{[Pr^-]}{[HPr]} \right) = 5.44 - 4.89 = +0.55$ $\frac{[Pr^-]}{[HPr]} = 10^{+0.55} = 3.55$

NOTE: Had the question asked instead for the ratio, [HPr]/[Pr-] (i.e. the ratio of acid/base), you would work the problem in the same way, and then invert at the end;

$$\frac{[H \text{ Pr}]}{[\text{Pr}^-]} = \frac{1}{[\text{Pr}^-]/[H \text{ Pr}]} = \frac{1}{3.55} = 0.28$$

19.18 We will work this in 2 parts: (1) We'll use initial data to determine pK_a, (2) We'll then determine the concentrations after the addition of NaOH, from which we'll get the new pH.

Note: This problem is very similar to #19.19

(1)
$$[HA] = 0.2000 \text{ M}$$
, $[A^-] = 0.1500 \text{ M}$, $pH = 3.35$

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$$

$$3.35 = pK_a + \log\left(\frac{0.150}{0.20}\right)$$

$$3.35 = pK_a - 0.12$$

$$pK_a = 3.35 + 0.12 = 3.47$$

(2) Initial n_{HA} and n_A

$$n_{HA} = 0.20 \, mol \, / \, L \, x \, 0.50 \, L = 0.100 \, mol \, HA$$

$$n_{A^{-}} = 0.150 \, mol \, / \, L \, x \, 0.50 \, L = 0.0750 \, mol \, A^{-}$$

Now let's determine concentrations after adding 0.0015 mol OH⁻.

	HA	OH-	A ⁻
n(Init)	0.100	0.0015	0.0750
n(Chg)	-0.0015	-0.0015	+0.0015
n(Fin)	0.0985	0	0.0765
Conc*	0.1970	0	0.1530

^{*}Conc. was determined by dividing n(Fin) by 0.50 L

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) = 3.47 + \log\left(\frac{0.153}{0.197}\right) = 3.36$$

Note: One would get the same result using the values of n(Fin) rather than the concentration

19.19 We will work this in 2 parts: (1) We'll use initial data to determine pK_a, (2) We'll then determine the concentrations after the addition of HCl, from which we'll get the new pH.

Note: This problem is very similar to #19.18

(1) [B] = 0.400 M, [BH⁺] = 0.250 M, pH = 8.88

$$pH = pK_a + \log\left(\frac{[B]}{[BH^+]}\right)$$

$$8.88 = pK_a + \log\left(\frac{0.400}{0.250}\right)$$

$$8.88 = pK_a + 0.20$$

$$pK_a = 8.88 - 0.20 = 8.68$$

(2) Initial n_B and n_{BH}⁺

$$n_{\rm B} = 0.40 \, mol \, / \, L \, x \, 0.250 \, L = 0.100 \, mol \, B$$

$$n_{RH^{+}} = 0.250 \, mol \, / \, Lx \, 0.250 \, L = 0.0625 \, mol \, A^{-}$$

Now let's determine concentrations after adding 0.0020 mol H⁺.

	В	H^+	BH^+
n(Init)	0.100	0.0020	0.0625
n(Chg)	-0.0020	-0.0020	+0.0020
n(Fin)	0.0980	0	0.0645
Conc*	0.392	0	0.258

*Conc. was determined by dividing n(Fin) by 0.25 L

$$pH = 8.68 + \log\left(\frac{[B]}{[BH^+]}\right) = 8.68 + \log\left(\frac{0.392}{0.258}\right) = 8.86$$

Note: One would get the same result using the values of n(Fin) rather than the concentration

19.42(C) Triethyl Amine = Et_3N , $K_b = 5.2x10^{-4}$. Add 15.00 mL of 0.100 M HCl to 20.00 mL of 0.100 M Et_3N .

(1) Determine the pK_a of Et₃NH⁺.

$$K_b = 5.2x10^{-4}$$

$$pK_b = -\log(5.2x10^{-4}) = 3.28$$

$$pK_a = 14. -3.28 = 10.72$$

(2) Determine initial amounts of Et₃N and H⁺

$$n_{Et,N} = 0.100 \, mol \, / \, L \, x \, 0.020 \, L = 0.0.0020 \, mol \, Et_3 N$$

$$n_{H^{+}} = 0.100 \, mol \, / \, Lx \, 0.0150 \, L = 0.00150 \, mol \, H^{+}$$

(3) Determine Final Concentrations and pH

	Et ₃ N	H^+	Et ₃ NH ⁺
n(Init)	0.0020	0.00150	0
n(Chg)	-0.00150	-0.00150	+0.00150
n(Fin)	0.00050	0	0.00150
Conc*	0.01429	0	0.04286

*Concentration determined by dividing by 35 mL = 0.035 M

$$pH = pK_a + \log\left(\frac{[Et_3N]}{[Et_3NH^+]}\right) = 10.72 + \log\left(\frac{0.01429}{0.04286}\right)$$

$$pH = 10.24$$

Note: One would get the same result using the values of n(Fin) rather than the concentration

19.50
$$Ag_2CO_3(s) \xrightarrow{K_{sp}} 2Ag^+(aq) + CO_3^{2-}(aq)$$
 $S = 0.032$ M
 $[Ag^+] = 2S = 2(0.032 \text{ M}) = 0.064 \text{ M}$, $[CO_3^{2-}] = S = 0.032$ M
 $K_{sp} = [Ag^+]^2[CO_3^{2-}] = (0.064)^2(0.032) = 1.31x10^{-4} \approx 1.3x10^{-4}$

19.56
$$Ca(IO_3)_2(s) \xrightarrow{K_{sp}} Ca^{2+}(aq) + 2IO_3^-(aq)$$

 $K_{sp} = 7.1 \times 10^{-7}$ (from Appendix C) - You would be given this value on a test.

Preliminary: For review, let's calculate the solubility of Ca(IO₃)₂ in pure water.

$$[Ca^{2+}] = S$$
, $IO_3^- = 2S$

$$K_{sp} = 7.1x10^{-7} = [Ca^{2+}][IO_3^-]^2 = S(2S)^2 = 4S^3$$

$$S^3 = \frac{7.1 \times 10^{-7}}{4} = 1.78 \times 10^{-7}$$

$$S = (1.78x10^{-7})^{1/3} = 5.62x10^{-3} M$$

Note: If we asked for $[IO_3^-]$ in pure water, it would be $2S = 1.12 \times 10^{-2} \text{ M}$

(a) Solubility in 0.06 M Ca(NO₃)₂ [\parallel Ca²⁺(0.06 M) + 2 NO₃-]

$$[Ca^{2+}] = 0.06 + S \approx 0.06 \text{ M}, IO_3^- = 2S$$

$$K_{sp} = 7.1x10^{-7} = [Ca^{2+}][IO_3^-]^2 = (0.06)(2S)^2 = 0.24S^2$$

$$S^{2} = \frac{7.1x10^{-7}}{0.24} = 2.96x10^{-6}$$

$$S = \left(2.96x10^{-6}\right)^{1/2} = 1.72x10^{-3} M$$

(b) Solubility in 0.06 M NaIO₃ [\parallel Na⁺ + IO₃-(0.06 M)]

$$[Ca^{2+}] = S$$
, $IO_3^- = 0.06 + 2S \approx 0.06$

$$K_{sp} = 7.1x10^{-7} = [Ca^{2+}][IO_3^-]^2 = (S)(0.06)^2 = (3.6x10^{-3})S$$

$$S^{2} = \frac{7.1x10^{-7}}{3.6x10^{-3}} = 1.97x10^{-4} \approx 2x10^{-4}$$