CHEM 1423

Chapters 20
Homework Solutions

TEXTBOOK HOMEWORK

Note: In various textbook questions, the author assumes that you will look up the data (e.g. $\lambda H_{f}{ }^{0}, \lambda G_{f}{ }^{0}$, and S^{0}) in Appendix B in working the problem. You will, of course, be given the necessary data on your tests. However, you are responsible to know that $\lambda H_{f}{ }^{0}=0$ and $\lambda G_{f}{ }^{0}=0$ for elements in their standard states.
20.14 (a) $\lambda S^{o}>0$ because a gas molecule is produced from condensed phase reactants
(b) $\lambda \mathrm{S}^{\circ}<0$ because there are fewer moles of gas on the product side of the reaction
(c) $\lambda S^{\circ}>0$ because a gas phase product from condensed phase reactants
20.16 (a) $\lambda S^{0}>0$ because the decrease in pressure increases the volume of the gas, which which increases its disorder.
(b) $\lambda \mathrm{S}^{\mathrm{o}}<0$ because aqueous (dissolved) product molecules have less disorder than the reactant molecules in the gas phase.
(c) $\lambda S^{0}>0$ because gas phase product molecules have more disorder than the aqueous (dissolved) reactant molecules.
20.21 (a) Ribose < Glucose < Sucrose because disorder increases with great molecule complexity.
(b) $\mathrm{CaCO}_{3}<\mathrm{CaO}+\mathrm{CO}_{2}<\mathrm{Ca}+\mathrm{C}+(3 / 2) \mathrm{O}_{2}$ because disorder increases with higher number of gas phase molecules.
(c) $\mathrm{SF}_{4}(\mathrm{~g})<\mathrm{SF}_{6}(\mathrm{~g})<\mathrm{S}_{2} \mathrm{~F}_{10}(\mathrm{~g})$ because, within a given phase, disorder increases with greater molecular complexity.
20.28 Molar entropies taken from Appendix B.
(a) Predict $\lambda \mathrm{S}^{0}<0$ because less moles of product gas molecules.

$$
\begin{aligned}
\Delta S^{o} & =\left[1 S^{o}\left(\mathrm{~N}_{2} \mathrm{O}\right)+1 S^{o}\left(\mathrm{NO}_{2}\right)\right]-\left[3 S^{o}(N O)\right] \\
& =[1(219.7)+1(239.9]-[3(210.65]=-172.35 \approx-172.4 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

(b) Difficult Prediction. However, can guess $\lambda \mathrm{S}^{\circ}>0$ because $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ product is more complex than $\mathrm{H}_{2}(\mathrm{~g})$. This difficult guess would not be given on a test.

$$
\begin{aligned}
\Delta S^{o} & =\left[2 S^{o}(\mathrm{Fe})+3 \mathrm{~S}^{o}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[3 \mathrm{~S}^{o}\left(\mathrm{H}_{2}\right)+1 \mathrm{~S}^{o}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\right. \\
& =[2(27.3)+3(188.72)]-[3(130.6)+1(87.4)]=+141.56 \approx+141.6 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

(c) Predict $\lambda S^{\circ}<0$ because have gas on left, but not on right.

$$
\begin{aligned}
\Delta S^{o} & =\left[1 S^{o}\left(P_{4} O_{10}\right)\right]-\left[1 S^{o}\left(P_{4}\right)+5 S^{o}\left(O_{2}\right]\right. \\
& =[1(229 .)]-[1(41.1)+5(205.0)]=-837.1 \approx-837 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

20.40 Gibbs Free Energies of Formation taken from Appendix B. However, you should know that $\lambda \mathrm{G}_{\mathrm{f}}{ }^{\mathrm{o}}$ of an element in its standard state is zero (0).
(a)

$$
\begin{aligned}
\Delta G^{o} & =\left[2 \Delta G_{f}^{o}(\mathrm{MgO})\right]-\left[2 \Delta G_{f}^{o}(\mathrm{Mg})+1 \Delta G_{f}^{o}\left(\mathrm{O}_{2}\right)\right] \\
& =[2(-569.0)]-[2(0)+1(0)]=-1138.0 k J \\
\Delta G^{o} & =\left[2 \Delta G_{f}^{o}\left(\mathrm{CO}_{2}\right)+4 \Delta G_{f}^{o}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[2 \Delta G_{f}^{o}\left(\mathrm{CH}_{3} \mathrm{OH}\right)+3 \Delta G_{f}^{o}\left(O_{2}\right)\right] \\
& =[2(-394.4)+4(-228.6]-[2(-161.9)+3(0)]=-1379.4 \mathrm{~kJ} \\
\Delta G^{o} & =\left[1 \Delta G_{f}^{o}\left(\mathrm{BaCO}_{3}\right)\right]-\left[1 \Delta G_{f}^{o}(\mathrm{BaO})+1 \Delta G_{f}^{o}\left(\mathrm{CO}_{2}\right)\right] \\
& =[1(-1139 .)]-[1(-520.4)+1(-394.4)]=-224.2 \mathrm{~kJ}
\end{aligned}
$$

20.46 Values of $\lambda \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ and S^{o} taken from Appendix B

$$
\text { (a) } \begin{aligned}
\Delta H^{o} & =\left[1 \Delta H_{f}^{o}(\mathrm{CO})+2 \Delta H_{f}^{o}\left(\mathrm{H}_{2}\right)\right]-\left[1 \Delta H_{f}^{o}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \\
& =[1(-110.5)+2(0)]-[1(-201.2)]=+90.7 \mathrm{~kJ} \\
\Delta S^{o} & =\left[1 S^{o}(\mathrm{CO})+S^{o}\left(\mathrm{H}_{2}\right)\right]-\left[1 S^{o}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \\
& =[1(197.5)+2(130.6)]-[1(238)]=220.7 \mathrm{~J} / \mathrm{K} \\
& =0.2207 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

(b) Note: To maintain consistent units, I have converted λS° to kJ / K

One may instead convert $\lambda \mathrm{G}^{0}$ to J .
(1) $\mathrm{T}=28^{\circ} \mathrm{C}=301 \mathrm{~K}$

$$
\Delta G^{o}=\Delta \mathrm{H}^{o}-T \Delta S^{o}=+90.7 \mathrm{~kJ}-(301 \mathrm{~K})(0.2207 \mathrm{~kJ} / \mathrm{K})=+24.3 \mathrm{~kJ}
$$

(2) $\mathrm{T}=128^{\circ} \mathrm{C}=401 \mathrm{~K}$

$$
\Delta G^{o}=\Delta \mathrm{H}^{o}-T \Delta S^{o}=+90.7 \mathrm{~kJ}-(401 \mathrm{~K})(0.2207 \mathrm{~kJ} / \mathrm{K})=+2.2 \mathrm{~kJ}
$$

(3) $\mathrm{T}=228^{\circ} \mathrm{C}=501 \mathrm{~K}$ $\Delta G^{o}=\Delta \mathrm{H}^{o}-T \Delta S^{o}=+90.7 \mathrm{~kJ}-(501 \mathrm{~K})(0.2207 \mathrm{~kJ} / \mathrm{K})=-19.9 \mathrm{~kJ}$
(c) For the reactants and products in their standard states, the reaction is non-spontaneous at $28^{\circ} \mathrm{C}$, near equilibrium at $128^{\circ} \mathrm{C}$ and spontaneous at $228^{\circ} \mathrm{C}$. This illustrates that the effect of positive $\lambda \mathrm{S}^{\mathrm{o}}$ in driving a reaction towards spontaneity becomes more important at higher temperatures.
20.48 Let's first calculate $\lambda \mathrm{H}^{\circ}$ and $\lambda \mathrm{S}^{\circ}$ for the reaction $\mathrm{Br}_{2}(\mathrm{l})-\mathrm{Br}_{2}(\mathrm{~g})$ from data in Appendix B.

$$
\begin{aligned}
\Delta H^{o} & =\Delta H_{f}^{o}\left[B r_{2}(g)\right]-\Delta H_{f}^{o}\left[B r_{2}(l)\right] \\
& =30.91 \mathrm{~kJ}-0 \mathrm{~kJ}=30.91 \mathrm{~kJ}
\end{aligned}
$$

Note that $\lambda \mathrm{H}_{\mathrm{f}}{ }^{0}\left[\mathrm{Br}_{2}(\mathrm{l})\right]=0$ because that is the most stable form of bromine at 1 atm and $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\Delta S^{o} & =S^{o}\left[B r_{2}(g)\right]-S^{o}\left[B r_{2}(l)\right] \\
& =245.38 \mathrm{~J} / \mathrm{K}-152.23 \mathrm{~J} / \mathrm{K}=93.15 \mathrm{~J} / \mathrm{K} \\
& =0.09315 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Note that (1) unlike the enthalpy of formation, the absolute molar entropy of $\operatorname{Br}_{2}(1) \neq 0$ and (2) we have converted λS° to kJ / K to have consistent units. We could have just as easily converted $\mathrm{\lambda H}^{\circ}$ to J .

We determine the normal boiling point by recognizing that liquid and gas are in
equilibrium at the substance's normal boiling point. Therefore, $\lambda \mathrm{G}^{0}=0$ at this temperature.

$$
\begin{aligned}
& \Delta G^{o}=\Delta H^{o}-T \Delta S^{o}=0 \\
& T=\frac{\Delta H^{o}}{\Delta S^{o}}=\frac{30.91 \mathrm{~kJ}}{0.09315 \mathrm{~kJ} / \mathrm{K}}=332 \mathrm{~K}-273=59^{\circ} \mathrm{C}
\end{aligned}
$$

20.51 Values of $\lambda \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ and S^{o} taken from Appendix B

$$
\begin{aligned}
\Delta H^{o} & =\left[2 \Delta H_{f}^{o}\left(C_{2} H_{5} O H\right)+2 \Delta H_{f}^{o}(\mathrm{CO})\right]-\left[1 \Delta H_{f}^{o}\left(C_{6} H_{12} O_{6}\right)\right] \\
& =[2(-277.63)+2(-393.5)]-[1(-1273.3)]=-68.96 \mathrm{~kJ} \approx-69.0 \mathrm{~kJ} \\
\Delta S^{o} & =\left[2 S^{o}\left(C_{2} H_{5} O H\right)+2 S^{o}(\mathrm{CO})\right]-\left[1 S^{o}\left(C_{6} H_{12} O_{6}\right)\right] \\
& =[2(161)+2(213.7)]-[1(212.1)]=+537.3 \mathrm{~J} / \mathrm{K} \text { । } \\
& =0.5373 \mathrm{~kJ} / \mathrm{K} \\
\Delta G^{o} & =\Delta H^{o}-T \Delta S^{o}=-69.0 \mathrm{~kJ}-(298 \mathrm{~K})(0.5373 \mathrm{~kJ} / \mathrm{K})=-229.1 \mathrm{~kJ}
\end{aligned}
$$

No, Temperature will have no effect on reaction spontaneity. That's because a reaction with $\lambda \mathrm{H}^{\circ}<0$ and $\lambda \mathrm{S}^{\circ}>0$ will yield $\lambda \mathrm{G}^{0}<0$ at all temperatures.
20.56 T = 298 K
(a)

$$
\begin{aligned}
\Delta G^{o} & =\left[1 \Delta G_{f}^{o}\left(N O_{2}\right)\right]-\left[1 \Delta G_{f}^{o}(N O)+(1 / 2) \Delta G_{f}^{o}\left(O_{2}\right]\right. \\
& =[1(51)]-[1(86.6)+(1 / 2)(0)]=-35.6 k J=-3.56 \times 10^{4} J
\end{aligned}
$$

$$
\ln (K)=-\frac{\Delta G^{o}}{R T}=-\frac{-\left(3.56 \times 10^{4} \mathrm{~J} / \mathrm{mol}\right.}{(8.31 \mathrm{~J} / \mathrm{mol}-K)(298 \mathrm{~K})}=+14.38
$$

$$
K=e^{+14.38}=1.75 \times 10^{6}
$$

(b)

$$
\begin{aligned}
\Delta G^{o} & =\left[1 \Delta G_{f}^{o}\left(\mathrm{H}_{2}\right)+1 \Delta G_{f}^{o}\left(\mathrm{Cl}_{2}\right)\right]-\left[2 \Delta G_{f}^{o}(\mathrm{HCl}]\right. \\
& =[1(0)+1(0)]-\left[2(-95.3]=+190.6 \mathrm{~kJ} / \mathrm{mol}=+1.906 \times 10^{5} \mathrm{~J} / \mathrm{mol}\right.
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \ln (K)=-\frac{\Delta G^{o}}{R T}=-\frac{+1.906 \times 10^{5} \mathrm{~J} / \mathrm{mol}}{(8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(298 \mathrm{~K})}=-76.97 \\
& K=e^{-76.97}=3.7 \times 10^{-34}
\end{aligned} \begin{aligned}
& \Delta G^{o}=\left[2 \Delta G_{f}^{o}(C O)\right]-\left[2 \Delta G_{f}^{o}(C-\mathrm{graph})+1 \Delta G_{f}^{o}\left(O_{2}\right]\right. \\
& \quad=[2(-137.2)]-[2(0)+1(0)]=-274.4 \mathrm{~kJ} / \mathrm{mol}=-2.744 \times 10^{5} \mathrm{~J} / \mathrm{mol} \\
& \ln (K)=-\frac{\Delta G^{o}}{R T}=-\frac{-2.744 \times 10^{5} \mathrm{~J} / \mathrm{mol}}{(8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(298 \mathrm{~K})}=+110.81 \\
& K=e^{+110.81}=1.3 \times 10^{48}
\end{aligned}
$$

20.64 $2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Hg}_{2}^{2+}(\mathrm{aq}) \stackrel{K_{c}}{\rightleftarrows} 2 \mathrm{Fe}^{2+}(a q)+2 \mathrm{Hg}^{2+}(a q) \quad \mathrm{K}_{\mathrm{c}}=9.1 \times 10^{-6}$ at 298 K
(a)

$$
\begin{aligned}
\Delta G^{o} & =-R T \ln \left(K_{c}\right)=-(8.31 \mathrm{~J} / \mathrm{mol}-K)(298 \mathrm{~K}) \ln \left(9.1 \times 10^{-6}\right) \\
& =2.87 \times 10^{4} \mathrm{~J} / \mathrm{mol}=28.7 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(b) If reactants and products are in the standard-state $(\mathrm{c}=1.00 \mathrm{M})$, then $\lambda \mathrm{G}=\lambda \mathrm{G}^{0}$.

Because $\lambda \mathrm{G}^{\mathrm{o}}>0$, the reaction with standard-state concentrations is NOT spontaneous as written. Instead, it is spontaneous in the opposite direct. The reaction will move to the left.
(c) $Q=\frac{\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{Hg}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{Hg}_{2}^{2+}\right]}=\frac{(0.01)^{2}(0.025)^{2}}{(0.20)^{2}(0.01)}=1.563 \times 10^{-4}$

$$
\begin{aligned}
\Delta G & =\Delta G^{o}+R T \ln (Q)=2.87 \times 10^{4} \mathrm{~J} / \mathrm{mol}+(8.31 \mathrm{~J} / \mathrm{mol}-K)(298 \mathrm{~K}) \ln \left(1.563 \times 10^{-4}\right) \\
& =2.87 \times 10^{4} \mathrm{~J} / \mathrm{mol}+\left(-2.17 \times 10^{4} \mathrm{~J} / \mathrm{mol}\right)=7.0 \times 10^{3} \mathrm{~J} / \mathrm{mol}=7.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Note that because $\lambda \mathrm{G}>0$, reactant will move to left at the initial concentrations given.

However, if the product concentrations are each increased by a factor of 10 , for example, then one gets $\mathrm{Q}=1.563 \times 10^{-7}$, and $\lambda \mathrm{G}=+2.87 \times 10^{4}+\left(-3.88 \times 10^{4}\right)=-1.0 \times 10^{4} \mathrm{~J} / \mathrm{mol}$.
Under these initial conditions, the reaction would move to the right.
20.74
(a) $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g)+6 \mathrm{~F}_{2}(g) \stackrel{K_{p}}{\rightleftarrows} 4 \mathrm{NF}_{3}(g)+5 \mathrm{O}_{2}(g)$
(b) Values of $\lambda \mathrm{G}_{\mathrm{f}}{ }^{0}$ are taken from Appendix B

$$
\begin{aligned}
\Delta G^{o} & =\left[4 \Delta G_{f}^{o}\left(N F_{3}\right)+5 \Delta G_{f}^{o}\left(O_{2}\right)\right]-\left[2 \Delta G_{f}^{o}\left(N_{2} O_{5}\right)+6 \Delta G_{f}^{o}\left(F_{2}\right)\right] \\
& =[4(-83.3)+5(0)]-[2(118)+6(0)]=-569.2 \mathrm{~kJ}=-5.692 \times 10^{5} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

(c) $Q=\frac{P_{N F_{3}}^{4} P_{O_{2}}^{5}}{P_{N_{2} O_{5}}^{2} P_{F_{2}}^{6}}=\frac{(0.25)^{4}(0.50)^{5}}{(0.20)^{2}(0.20)^{6}}=47.68$

$$
\begin{aligned}
\Delta G & =\Delta G^{o}+R T \ln (Q)=-5.692 \times 10^{5} \mathrm{~J} / \mathrm{mol}+(8.31 \mathrm{~J} / \mathrm{mol}-K)(298 \mathrm{~K}) \ln (47.68) \\
& =-5.692 \times 10^{5} \mathrm{~J} / \mathrm{mol}+\left(+5.97 \times 10^{3} \mathrm{~J} / \mathrm{mol}\right)=-5.60 \times 10^{5} \mathrm{~J} / \mathrm{mol}=-560 . \mathrm{kJ} / \mathrm{mol}
\end{aligned}
$$

