CHEM 1423

Chapters 23

Homework Solutions

TEXTBOOK HOMEWORK

23.6 Note: To balance the nuclear equations, the total of mass numbers and charges must be be equal on both sides of the equation.
(a) ${ }_{92}^{234} U \rightarrow{ }_{90}^{230} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}$
(b) ${ }_{93}^{232} \mathrm{~Np}+{ }_{-1}^{0} e \rightarrow{ }_{92}^{232} \mathrm{U}$
(c) ${ }_{7}^{22} N \rightarrow{ }_{6}^{12} C+{ }_{1}^{0} e$
23.8 Note: To balance the nuclear equations, the total of mass numbers and charges must be be equal on both sides of the equation.
(a) ${ }_{23}^{48} U \rightarrow{ }_{22}^{48} \mathrm{Ti}+{ }_{1}^{0} e$
(b) ${ }_{48}^{107} \mathrm{Cd}+{ }_{-1}^{0} e \rightarrow{ }_{47}^{107} \mathrm{Ag}$
(c) ${ }_{86}^{210} \mathrm{Rn} \rightarrow{ }_{84}^{206} \mathrm{Po}+{ }_{2}^{4} \mathrm{He}$
23.9 Note: To balance the nuclear equations, the total of mass numbers and charges must be be equal on both sides of the equation.
(a) ${ }_{94}^{241} \mathrm{Pu} \rightarrow{ }_{95}^{241} \mathrm{Am}+{ }_{-1}^{0} e$
(b) ${ }_{88}^{228} R a \rightarrow{ }_{89}^{228} \mathrm{Ac}+{ }_{-1}^{0} e$
(c) ${ }_{85}^{207} \mathrm{At} \rightarrow{ }_{83}^{203} \mathrm{Bi}+{ }_{2}^{4} \mathrm{He}$
23.12 Note: In the text HW, you are expected to calculate N/Z and then look at Figure 23.2 (pg. 769) to determine whether N / Z is above or below the stable isotope values for this atomic number, in order to determine the mode of decay. On a test, I will furnish the "typical" N/Z value for comparison.
(a) ${ }_{92}{ }^{238} \mathrm{U}: \mathrm{A}>83$. Therefore, the mode is α decay
(b) $24^{48} \mathrm{Cr}: \mathrm{N} / \mathrm{Z}=(48-24) / 24=1.00$. For $\mathrm{Z}=24$, the stable $\mathrm{N} / \mathrm{Z}=1.1$. Therefore, N / Z is too low. The decay mode will be either positron decay or electron capture.
(c) $25^{50} \mathrm{Mn}: \mathrm{N} / \mathrm{Z}=(50-25) / 25=1.00$. For $\mathrm{Z}=25$, the stable $\mathrm{N} / \mathrm{Z}=1.1$. Therefore, N / Z is too low. The decay mode will be either positron decay or electron capture.
23.13 Note: In the text HW, you are expected to calculate N/Z and then look at Figure 23.2 (pg. 769) to determine whether N / Z is above or below the stable isotope values for this atomic number, in order to determine the mode of decay. On a test, I will furnish the "typical" N/Z value for comparison.
(a) $47^{111} \mathrm{Ag}: \mathrm{N} / \mathrm{Z}=(111-47) / 47=1.36$. For $\mathrm{Z}=47$, the stable $\mathrm{N} / \mathrm{Z}=1.2$. Therefore, N / Z is too high. The decay mode will be β decay
(b) ${ }_{17}{ }^{41} \mathrm{Cl}: \mathrm{N} / \mathrm{Z}=(41-17) / 17=1.41$. For $\mathrm{Z}=17$, the stable $\mathrm{N} / \mathrm{Z}=1.1$. Therefore, N / Z is too high. The decay mode will be β decay.
(c) $44^{110} \mathrm{Ru}: N / Z=(110-44) / 44=1.50$. For $Z=44$, the stable $N / Z=1.2$. Therefore, N / Z is too high. The decay mode will be β decay.
23.34 (a) ${ }_{15}^{31} P+\gamma \rightarrow{ }_{14}^{29} \mathrm{Si}+{ }_{1}^{1} H+{ }_{0}^{1} n$
(b) ${ }_{98}^{252} C f+{ }_{5}^{10} B \rightarrow{ }_{103}^{257} L r+5{ }_{0}^{1} n$
(c) ${ }_{92}^{238} U+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{94}^{239} \mathrm{Pu}+3{ }_{0}^{1} n$

