CHEM 1423 Chapter 13 Homework Questions

TEXTBOOK HOMEWORK

- **13.43** Calculate the molarity of each aqueous solution:
- (a) 78.0 mL of 0.240 M NaOH diluted to 0.250 L with water
- (b) 38.5 mL of 1.2 M HNO3 diluted to 0.130 L with water
- **13.47** Calculate the molality of the following:
- (a) A solution containing 85.4 g of glycine (NH $_2$ CH $_2$ COOH) dissolved in 1.270 kg of H $_2$ O
- (b) A solution containing 8.59 g of glycerol ($C_3H_8O_3$) in 77.0 g of ethanol (C_2H_5OH)
- **13.49** What is the molality of a solution consisting of 44.0 mL of benzene (C6H6; d = 0.877 g/mL) in 167 mL of hexane (C6H14; d = 0.660 g/mL)?
- **13.53** A solution contains 0.35 mol of isopropanol (C3H7OH) dissolved in 0.85 mol of water.
- (a) What is the mole fraction of iso- propanol?
- (b) The mass percent?
- (c) The molality?
- **13.55** Calculate the molality, molarity, and mole fraction of NH3 in an 8.00 mass % aqueous solution (d = 0.9651 g/mL).
- **13.72** Calculate the vapor pressure of a solution of 34.0 g of glycerol (C3H8O3) in 500.0 g of water at 25 °C. The vapor pressure of water at 25 °C is 23.76 torr. (Assume ideal behavior.)

- **13.76** The boiling point of ethanol (C2H5OH) is 78.5 °C. What is the boiling point of a solution of 6.4 g of vanillin (M = 152.14 g/mol) in 50.0 g of ethanol (Kb of ethanol = 1.22 °C/m)?
- **13.80** Calculate the molality and van't Hoff factor (i) for the following aqueous solutions:
- (a) 1.00 mass % NaCl, freezing point = -0.593 °C
- (b) 0.500 mass % CH₃COOH, freezing point = -0.159 °C

SUPPLEMENTARY HOMEWORK

S1	. The process of dissolving is favored if the interactions are weaker than
the	
	interations.
	a. solute-solvent; solute-solute and solvent-solvent
	b. solvent-solvent; solute-solute and solute-solvent
	c. solute-solute and solvent-solvent; solute-solvent
	d. solute-solvent and solvent-solvent; solute-solute
	e. solute-solute; solute-solvent and solvent-solvent
S2	Two liquids which mix together in all proportions are said to be; they mix because a. miscible; their intermolecular interactions are dissimilar b. miscible; their intermolecular interactions are similar c. miscible; their densities are dissimilar d. immiscible; their intermolecular interactions are similar e. immiscible; their intermolecular interactions are dissimilar
S3	The concentration unit one part per billion (one ppb) is equivalent to one of solute per of solution. a. mg; g b. μg; g c. mg; kg d. μg; kg e. ng; kg

- **S4.** If 750 mL of a certain solution contains 50.0 g Na₂SO₄, the sodium ion concentration, [Na⁺], is
 - a. 0.264 M
 - b. 0.315 M
 - c. 0.469 M
 - d. 0.560 M
 - e. 0.939 M
- **S5.** The freezing points of the following aqueous solutions, from highest to lowest, are: 0.25 m glucose, C₆H₁₂O₆ 0.15 m CaCl₂ 0.20 m NH₄NO₃
 - a. $C_6H_{12}O_6 > NH_4NO_3 > CaCl_2$
 - b. $C_6H_{12}O_6 > CaCl_2 > NH_4NO_3$
 - c. $CaCl_2 > C_6H_{12}O_6 > NH_4NO_3$
 - d. $CaCl_2 > NH_4NO_3 > C_6H_{12}O_6$
 - e. $NH_4NO_3 > C_6H_{12}O_6 > CaCl_2$
- **S6.** A sample of the strong electrolyte, potassium phosphate (K₃PO₄, M=212.3) is dissolved in 400 grams of water. The boiling point of the solution is 102.65 °C. How many grams of K₃PO₄ are contained in the mixture?
- **S7.** The vapor pressure of liquid toluene, C₆H₅CH₃(1) [M=92], is 94.0 torr at 40 °C. When 25.0 grams of an unknown non-volatile compound is dissolved in 184 grams of toluene at 40 °C, the vapor pressure of the mixture is 84.6 torr. Calculate the Molar Mass of the unknown compound, in g/mol.
- **S8.** An aqueous solution of phosphoric acid, H₃PO₄, contains 285 g H₃PO₄ in 400 mL solution, and has a density of 1.35 g/mL. Calculate
 - (a) the weight % H₃PO₄ in this solution.
 - (b) the concentration in mol/L of this solution

S9. The solvent, toluene, has a normal boiling point of 110.6 °C and a boiling point elevation constant of 3.33 °C/m. When 12.0 grams of an unknown substance, X, is added to 240 grams of toluene, the boiling point is 111.9 °C. Calculate the Molar Mass of the unknown compound.