## CHEM 1423

## Chapter 13

## Homework Questions

## TEXTBOOK HOMEWORK

13.43 Calculate the molarity of each aqueous solution:
(a) 78.0 mL of 0.240 M NaOH diluted to 0.250 L with water
(b) 38.5 mL of 1.2 M HNO 3 diluted to 0.130 L with water
13.47 Calculate the molality of the following:
(a) A solution containing 85.4 g of glycine $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)$ dissolved in 1.270 kg of $\mathrm{H}_{2} \mathrm{O}$
(b) A solution containing 8.59 g of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in 77.0 g of ethanol ( $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ )
13.49 What is the molality of a solution consisting of 44.0 mL of benzene (C6H6; $\mathrm{d}=0.877 \mathrm{~g} / \mathrm{mL})$ in 167 mL of hexane $(\mathrm{C} 6 \mathrm{H} 14 ; \mathrm{d}=0.660 \mathrm{~g} / \mathrm{mL})$ ?
13.53 A solution contains 0.35 mol of isopropanol ( C 3 H 7 OH ) dissolved in 0.85 mol of water.
(a) What is the mole fraction of iso- propanol?
(b) The mass percent?
(c) The molality?
13.55 Calculate the molality, molarity, and mole fraction of NH3 in an 8.00 mass $\%$ aqueous solution ( $\mathrm{d}=0.9651 \mathrm{~g} / \mathrm{mL}$ ).
13.72 Calculate the vapor pressure of a solution of 34.0 g of glycerol (C3H8O3) in 500.0 g of water at $25^{\circ} \mathrm{C}$. The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.76 torr. (Assume ideal behavior.)
13.76 The boiling point of ethanol $(\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH})$ is $78.5^{\circ} \mathrm{C}$. What is the boiling point of a solution of 6.4 g of vanillin $(\mathrm{M}=152.14 \mathrm{~g} / \mathrm{mol})$ in 50.0 g of ethanol $(\mathrm{Kb}$ of ethanol $\left.=1.22^{\circ} \mathrm{C} / \mathrm{m}\right)$ ?
13.80 Calculate the molality and van't Hoff factor (i) for the following aqueous solutions:
(a) 1.00 mass $\% \mathrm{NaCl}$, freezing point $=-0.593{ }^{\circ} \mathrm{C}$
(b) 0.500 mass $\% \mathrm{CH}_{3} \mathrm{COOH}$, freezing point $=-0.159{ }^{\circ} \mathrm{C}$

## SUPPLEMENTARY HOMEWORK

S1. The process of dissolving is favored if the $\qquad$ interactions are weaker than the
$\qquad$ interations.
a. solute-solvent; solute-solute and solvent-solvent
b. solvent-solvent; solute-solute and solute-solvent
c. solute-solute and solvent-solvent; solute-solvent
d. solute-solvent and solvent-solvent; solute-solute
e. solute-solute; solute-solvent and solvent-solvent

S2. Two liquids which mix together in all proportions are said to be $\qquad$ ; they mix because $\qquad$ .
a. miscible; their intermolecular interactions are dissimilar
b. miscible; their intermolecular interactions are similar
c. miscible; their densities are dissimilar
d. immiscible; their intermolecular interactions are similar
e. immiscible; their intermolecular interactions are dissimilar

S3. The concentration unit one part per billion ( one ppb) is equivalent to one of solute per $\qquad$ of solution.
a. mg ; g
b. $\mu \mathrm{g} ; \mathrm{g}$
c. mg ; kg
d. $\mu \mathrm{g} ; \mathrm{kg}$
e. ng; kg

S4. If 750 mL of a certain solution contains $50.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$, the sodium ion concentration, $\left[\mathrm{Na}^{+}\right]$, is
a. 0.264 M
b. 0.315 M
c. 0.469 M
d. 0.560 M
e. 0.939 M

S5. The freezing points of the following aqueous solutions, from highest to lowest, are: 0.25 m glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 0.15 \mathrm{~m} \mathrm{CaCl}_{2} \quad 0.20 \mathrm{~m} \mathrm{NH} 4 \mathrm{NO}_{3}$
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{CaCl}_{2}$
b. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{CaCl}_{2}>\mathrm{NH}_{4} \mathrm{NO}_{3}$
c. $\mathrm{CaCl}_{2}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{NH}_{4} \mathrm{NO}_{3}$
d. $\mathrm{CaCl}_{2}>\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
e. $\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{CaCl}_{2}$

S6. A sample of the strong electrolyte, potassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{M}=212.3\right)$ is dissolved in 400 grams of water. The boiling point of the solution is 102.65 ${ }^{\circ} \mathrm{C}$. How many grams of $\mathrm{K}_{3} \mathrm{PO}_{4}$ are contained in the mixture?

S7. The vapor pressure of liquid toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}(1)[\mathrm{M}=92]$, is 94.0 torr at 40 ${ }^{\circ} \mathrm{C}$. When 25.0 grams of an unknown non-volatile compound is dissolved in 184 grams of toluene at $40^{\circ} \mathrm{C}$, the vapor pressure of the mixture is 84.6 torr. Calculate the Molar Mass of the unknown compound, in $\mathrm{g} / \mathrm{mol}$.

S8. An aqueous solution of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, contains $285 \mathrm{~g} \mathrm{H} 3 \mathrm{HO}_{4}$ in 400 mL solution, and has a density of $1.35 \mathrm{~g} / \mathrm{mL}$. Calculate
(a) the weight $\% \mathrm{H}_{3} \mathrm{PO}_{4}$ in this solution.
(b) the concentration in $\mathrm{mol} / \mathrm{L}$ of this solution

S9. The solvent, toluene, has a normal boiling point of $110.6^{\circ} \mathrm{C}$ and a boiling point elevation constant of $3.33^{\circ} \mathrm{C} / \mathrm{m}$. When 12.0 grams of an unknown substance, $X$, is added to 240 grams of toluene, the boiling point is $111.9^{\circ} \mathrm{C}$. Calculate the Molar Mass of the unknown compound.

