CHEM 1423 Chapter 17 Homework Questions

TEXTBOOK HOMEWORK

17.29 At 425 °C, Kp = 4.18×10^{-9} for the reaction 2HBr(g) \rightleftharpoons H₂(g) + Br₂(g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H₂(g), and 0.010 atm of Br₂(g) are introduced into a container. Is the reaction at equilibrium? If not, in which direction will it proceed?

17.38 For the following reaction, $Kp = 6.5 \times 10^4$ at 308 K: 2NO(g) + Cl₂(g) \rightleftharpoons 2NOCl(g) At equilibrium, $P_{NO} = 0.35$ atm and $P_{Cl2} = 0.10$ atm. What is the equilibrium partial pressure of NOCl(g)?

17.41 Hydrogen sulfide decomposes according to the following reaction, for which $Kc = 9.30x10^{-8}$ at 700 °C: $2 H_2S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$ If 0.45 mol of H₂S is placed in a 3.0-L container, what is the equilibrium concentration of H₂(g) at 700 °C? **Note:** Assume that very little H₂S dissociates.

17.44 In an analysis of interhalogen reactivity, 0.500 mol of ICl was placed in a 5.00 L flask, where it decomposed at a high T: $2 \text{ ICl}(g) \rightleftharpoons I_2(g) + \text{Cl}_2(g)$. Calculate the equilibrium concentrations of I₂, Cl₂, and ICl (Kc = 0.110 at this temperature).

17.46 The first step in HNO production is the catalyzed oxidation of NH₃. Without a catalyst, a different reaction predominates:

 $4 \operatorname{NH}_3(g) + 3 \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{N}_2(g) + 6 \operatorname{H}_2\operatorname{O}(g)$

When 0.0150 mol of $NH_3(g)$ and 0.0150 mol of $O_2(g)$ are placed in a 1.00 L container at a certain temperature, the N_2 concentration at equilibrium is 1.96×10^{-3} M. Calculate Kc.

17.47 A key step in the extraction of iron from its ore is $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$ Kp = 0.403 at 1000 °C This step occurs in the 700 °C to 1200 °C zone within a blast furnace. What are the equilibrium partial pressures of CO(g) and CO₂(g) when 1.00 atm of CO(g) and excess FeO(s) react in a sealed container at 1000 °C?

17.56 Predict the effect of increasing the container volume on the amounts of each reactant and product in the following reactions:

(a)
$$F_2(g) \rightleftharpoons 2 F(g)$$

(b) $2 CH_4(g) \rightleftharpoons C_2H_2(g) + 3 H_2(g)$

17.61 Predict the effect of decreasing the temperature on the amounts of reactants in the following reactions:

(a) $C_2H_2(g) + H_2O(g) \rightleftharpoons CH_3CHO(g)$	$\Delta H^{o}_{rxn} = -151 \text{ kJ}$
(b) $CH_3CH_2OH(l) + O_2(g) \rightleftharpoons CH_3CO_2H(l) + H_2O(g)$	$\Delta H^{o}_{rxn} = -451 \text{ kJ}$
(c) $2 C_2H_4(g) + O_2(g) \rightleftharpoons 2 CH_3CHO(g)$	(exothermic)
(d) $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$	(endothermic)

SUPPLEMENTARY HOMEWORK

- **S1.** If a catalyst is added to a chemical reaction, the equilibrium yield of a product will be _____, and the time taken to come to equilibrium will be _____than before.
 - a. higher; less
 - b. lower; the same
 - c. higher; the same
 - d. the same; less
 - e. lower; less

S2. Consider the reaction $NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$.

If an equilibrium mixture of these three substances is compressed, equilibrium will _____, because _____.

- a. shift to the right; higher pressure favors fewer moles of gas
- b. shift to the right; higher pressure favors more moles of gas
- c. shift to the left; higher pressure favors fewer moles of gas
- d. shift to the left; higher pressure favors more moles of gas
- e. be unchanged; solid NH4Cl does not appear in the equilibrium constant expression.
- **S3.** An endothermic reaction which results in an increase in moles of gas will be most product-favored under conditions of _____ pressure and _____ temperature.
 - a. high; high
 - b. high; moderate
 - c. high; low
 - d. low; high
 - e. low; low
- **S4.** Consider the equilibrium system $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$.

If more C(s) is added, the equilibrium will ____; if CO is removed the equilibrium will ____.

- a. shift to the left; shift to the left
- b. shift to the right; shift to the right
- c. shift to the right; shift to the left
- d. be unchanged; shift to the left
- e. be unchanged; shift to the right

S5. Consider the exothermic reaction at equilibrium:

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$

If the system is cooled, the equilibrium will _____, because _____. a. be unchanged; temperature has no effect on equilibrium b. shift to the left; decreased temperature favors an exothermic reaction c. shift to the right; decreased temperature favors an exothermic reaction d. shift to the right; decreased temperature favors an endothermic reaction e. shift to the left; decreased temperature favors an endothermic reaction

- **S6.** Consider the equilibrium: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$. $\Delta H^\circ = -92.2 \text{ kJ}$. Determine whether the ratio, $[NH_3]/[H_2]$ will increase, decrease, or remain the same for the following changes.
 - a. N₂ is added to the mixture at constant volume.
 - b. NO(g) is added to the mixture at constant volume.
 - c. NO(g) is added to the mixture at constant total pressure.
 - d. The volume of the container is halved.
 - e. The temperature is decreased.
- **S7.** The equilibrium constant for the reaction NO(g) + $1/2 O_2(g) \rightleftharpoons NO_2(g)$ has a value of K_c = 1.23 at a certain temperature. What is the value of K_c for the reaction $2 NO_2(g) \rightleftharpoons 2 NO(g) + O_2(g)$?
- **S8.** The equilibrium constant for the reaction $4 \text{ NO}(g) + 2 \text{ Br}_2(g) \rightleftharpoons 4 \text{ NOBr}(g)$ has a value of $K_c = 39$ at a certain temperature. What is the value of K_c for the reaction

 $2 \operatorname{NOBr}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$?

- S9. For the reaction N₂(g) + 3 H₂(g) ⇒ 2 NH₃(g)
 K_c = 0.060 at a certain temperature. In an equilibrium mixture of the three gases, [NH₃] = 0.24 M and [H₂] = 1.03 M. What is the concentration of N₂ in this system?
- **S10.** Consider the reaction, $Br_2(g) + 2 NO(g) \rightleftharpoons 2 NOBr(g)$

A sample of pure NOBr is isolated at low temperature. It is placed in a flask at a concentration of 0.200 M and warmed up to 50°C. When the reaction has come to equilibrium, the concentration of NOBr is 0.176 M. What is the value of K_c at 50°C for this reaction?

- **S11.** Consider the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ The equilibrium constant, K_c, for this reaction is 10.0 at 420 °C and 45.0 at 300 °C.
 - a. Calculate the Enthalpy Change (ΔH^{o}) for this reaction (in kJ/mol).
 - b. Calculate the value of K_c for this reaction at 350 °C.
 - c. Calculate the temperature (in °C) at which the value of the equilibrium constant is 2.0
- **S12.** Consider the gas phase equilibrium, $2 A(g) \rightleftharpoons B(g) + 2 C(g)$, $K_c = 800$. 2.0 mol of B(g) and 1.5 mol of C(g) are placed in a 5.0 L container and the mixture is allowed to come to equilibrium. Calculate the concentration of A(g) at equilibrium. **NOTE: You can assume that very little B(g) and C(g)** react to form A(g).

S13. Consider the aqueous solution equilibrium, $A(aq) + 2 B(aq) \rightleftharpoons 2 C(aq)$. The product, C, has an absorption in the UV range of the spectrum at 320 nm, with a Molar Absorptivity, $\varepsilon = 15,500 \text{ M}^{-1} \text{ cm}^{-1}$

A solution is prepared in a 0.50 cell with initial concentrations of A and B, $[A]_o = 4.00 \times 10^{-4} \text{ M}$ and $[B]_o = 6.00 \times 10^{-4} \text{ M}$, and the solution is allowed to reach equilibrium. At equilibrium, the percent transmission is %T = 32.0%.

Calculate the equilibrium constant, K_c, for this reaction.