## CHEM 1423

Chapter 17
Homework Questions

## TEXTBOOK HOMEWORK

17.29 At $425^{\circ} \mathrm{C}, \mathrm{Kp}=4.18 \times 10^{-9}$ for the reaction $2 \mathrm{HBr}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$ In one experiment, 0.20 atm of $\mathrm{HBr}(\mathrm{g}), 0.010 \mathrm{~atm}$ of $\mathrm{H}_{2}(\mathrm{~g})$, and 0.010 atm of $\mathrm{Br}_{2}(\mathrm{~g})$ are introduced into a container. Is the reaction at equilibrium? If not, in which direction will it proceed?
17.38 For the following reaction, $\mathrm{Kp}=6.5 \times 10^{4}$ at 308 K :
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$
At equilibrium, $\mathrm{P}_{\mathrm{NO}}=0.35 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{Cl} 2}=0.10 \mathrm{~atm}$. What is the equilibrium partial pressure of $\mathrm{NOCl}(\mathrm{g})$ ?
17.41 Hydrogen sulfide decomposes according to the following reaction, for which $\mathrm{Kc}=9.30 \times 10^{-8}$ at $700^{\circ} \mathrm{C}: 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
If 0.45 mol of $\mathrm{H}_{2} \mathrm{~S}$ is placed in a 3.0-L container, what is the equilibrium concentration of $\mathrm{H}_{2}(\mathrm{~g})$ at $700^{\circ} \mathrm{C}$ ?
Note: Assume that very little $\mathrm{H}_{2} \mathrm{~S}$ dissociates.
17.44 In an analysis of interhalogen reactivity, 0.500 mol of ICl was placed in a 5.00 L flask, where it decomposed at a high T: $2 \operatorname{ICl}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. Calculate the equilibrium concentrations of $\mathrm{I}_{2}, \mathrm{Cl}_{2}$, and ICl ( $\mathrm{Kc}=0.110$ at this temperature).
17.46 The first step in HNO production is the catalyzed oxidation of $\mathrm{NH}_{3}$. Without a catalyst, a different reaction predominates:
$4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 0.0150 mol of $\mathrm{NH}_{3}(\mathrm{~g})$ and 0.0150 mol of $\mathrm{O}_{2}(\mathrm{~g})$ are placed in a 1.00 L container at a certain temperature, the $\mathrm{N}_{2}$ concentration at equilibrium is $1.96 \times 10^{-3} \mathrm{M}$. Calculate Kc.
17.47 A key step in the extraction of iron from its ore is $\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{Kp}=0.403$ at $1000^{\circ} \mathrm{C}$ This step occurs in the $700^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ zone within a blast furnace. What are the equilibrium partial pressures of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ when 1.00 atm of $\mathrm{CO}(\mathrm{g})$ and excess FeO (s) react in a sealed container at $1000{ }^{\circ} \mathrm{C}$ ?
17.56 Predict the effect of increasing the container volume on the amounts of each reactant and product in the following reactions:
(a) $\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~F}$ (g)
(b) $2 \mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
17.61 Predict the effect of decreasing the temperature on the amounts of reactants in the following reactions:
(a) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-151 \mathrm{~kJ}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{\circ}=-451 \mathrm{~kJ}$
(c) $2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \quad$ (exothermic)
(d) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(endothermic)

## SUPPLEMENTARY HOMEWORK

S1. If a catalyst is added to a chemical reaction, the equilibrium yield of a product will be___ and the time taken to come to equilibrium will be $\qquad$ than before.
a. higher; less
b. lower; the same
c. higher; the same
d. the same; less
e. lower; less

S2. Consider the reaction $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$.
If an equilibrium mixture of these three substances is compressed, equilibrium will $\qquad$ because $\qquad$ .
a. shift to the right; higher pressure favors fewer moles of gas
b. shift to the right; higher pressure favors more moles of gas
c. shift to the left; higher pressure favors fewer moles of gas
d. shift to the left; higher pressure favors more moles of gas
e. be unchanged; solid $\mathrm{NH}_{4} \mathrm{Cl}$ does not appear in the equilibrium constant expression.

S3. An endothermic reaction which results in an increase in moles of gas will be most product-favored under conditions of $\qquad$ pressure and $\qquad$ temperature.
a. high; high
b. high; moderate
c. high; low
d. low; high
e. low; low

S4. Consider the equilibrium system $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$.
If more $\mathrm{C}(\mathrm{s})$ is added, the equilibrium will $\qquad$ ; if CO is removed the equilibrium will $\qquad$ .
a. shift to the left; shift to the left
b. shift to the right; shift to the right
c. shift to the right; shift to the left
d. be unchanged; shift to the left
e. be unchanged; shift to the right

S5. Consider the exothermic reaction at equilibrium:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If the system is cooled, the equilibrium will $\qquad$ , because $\qquad$ .
a. be unchanged; temperature has no effect on equilibrium
b. shift to the left; decreased temperature favors an exothermic reaction
c. shift to the right; decreased temperature favors an exothermic reaction
d. shift to the right; decreased temperature favors an endothermic reaction
e. shift to the left; decreased temperature favors an endothermic reaction

S6. Consider the equilibrium: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) . \Delta \mathrm{H}^{0}=-92.2 \mathrm{~kJ}$. Determine whether the ratio, $\left[\mathrm{NH}_{3}\right] /\left[\mathrm{H}_{2}\right]$ will increase, decrease, or remain the same for the following changes.
a. $\mathrm{N}_{2}$ is added to the mixture at constant volume.
b. $\mathrm{NO}(\mathrm{g})$ is added to the mixture at constant volume.
c. $\mathrm{NO}(\mathrm{g})$ is added to the mixture at constant total pressure.
d. The volume of the container is halved.
e. The temperature is decreased.

S7. The equilibrium constant for the reaction $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$ has a value of $K_{C}=1.23$ at a certain temperature. What is the value of $K_{C}$ for the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ ?

S8. The equilibrium constant for the reaction $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NOBr}(\mathrm{g})$ has a value of $K_{C}=39$ at a certain temperature. What is the value of $K_{C}$ for the reaction
$2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$ ?

S9. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{C}}=0.060$ at a certain temperature. In an equilibrium mixture of the three gases, $\left[\mathrm{NH}_{3}\right]=0.24 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=1.03 \mathrm{M}$. What is the concentration of $\mathrm{N}_{2}$ in this system?

S10. Consider the reaction, $\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$
A sample of pure NOBr is isolated at low temperature. It is placed in a flask at a concentration of 0.200 M and warmed up to $50^{\circ} \mathrm{C}$. When the reaction has come to equilibrium, the concentration of NOBr is 0.176 M . What is the value of $\mathrm{K}_{\mathrm{C}}$ at $50^{\circ} \mathrm{C}$ for this reaction?

S11. Consider the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
The equilibrium constant, $\mathrm{K}_{\mathrm{c}}$, for this reaction is 10.0 at $420^{\circ} \mathrm{C}$ and 45.0 at $300^{\circ} \mathrm{C}$.
a. Calculate the Enthalpy Change ( $\Delta \mathrm{H}^{\circ}$ ) for this reaction (in $\mathrm{kJ} / \mathrm{mol}$ ).
b. Calculate the value of $\mathrm{K}_{\mathrm{c}}$ for this reaction at $350^{\circ} \mathrm{C}$.
c. Calculate the temperature (in ${ }^{\circ} \mathrm{C}$ ) at which the value of the equilibrium constant is 2.0

S12. Consider the gas phase equilibrium, $2 \mathrm{~A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+2 \mathrm{C}(\mathrm{g}) \quad, \mathrm{K}_{\mathrm{c}}=800$. 2.0 mol of $\mathrm{B}(\mathrm{g})$ and 1.5 mol of $\mathrm{C}(\mathrm{g})$ are placed in a 5.0 L container and the mixture is allowed to come to equilibrium.
Calculate the concentration of $\mathrm{A}(\mathrm{g})$ at equlibrium.
NOTE: You can assume that very little $B(g)$ and $C(g)$ react to form $\mathbf{A}(\mathrm{g})$.

S13. Consider the aqueous solution equilibrium, $\mathrm{A}(\mathrm{aq})+2 \mathrm{~B}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{C}(\mathrm{aq})$. The product, C, has an absorption in the UV range of the spectrum at 320 nm , with a Molar Absorptivity, $\varepsilon=15,500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

A solution is prepared in a 0.50 cell with initial concentrations of A and B, $[\mathrm{A}]_{\mathrm{o}}=4.00 \times 10^{-4} \mathrm{M}$ and $[\mathrm{B}]_{\mathrm{o}}=6.00 \times 10^{-4} \mathrm{M}$, and the solution is allowed to reach equilibrium. At equilibrium, the percent transmission is $\% \mathrm{~T}=32.0 \%$.

Calculate the equilibrium constant, $\mathrm{K}_{\mathrm{c}}$, for this reaction.

