SALT pH Review Questions (Chap. 18)

Lactic Acid (Hlac) has an Acid Dissociation Constant of 1.4x10⁻⁴ What is the pH of 0.03 M Potassium Lactate (KLac)? Answer: pH=8.2

Aniline (Anil) has a Base Equilibrium Constant of 4.3×10^{-10} What is the pH of 0.05 M Anilinium Chloride (AnilHCI)? Answer: pH=3.0

Formic Acid (HForm) has an Acid Dissociation Constant of 1.8x10⁻⁴ What is the pH of 0.10 M Lithium Formate (LiForm)? Answer: pH=8.4

Quinoline (Quin) has a Base Equilibrium Constant of 6.0x10⁻¹⁰ What is the pH of 0.002 M Anilinium Chloride (AnilHCI) Answer: pH=3.7

CHEM 1423 Chapter 18 Homework Questions

TEXTBOOK HOMEWORK

18.15 Which solution has the higher pH? Explain.

- (a) A 0.1 M solution of an acid with Ka = 1×10^{-4} or one with Ka = 4×10^{-5}
- (b) A 0.1 M solution of an acid with pKa = 3.0 or one with pKa = 3.5
- (c) A 0.1 M solution or a 0.01 M solution of a weak acid
- (d) A 0.1 M solution of a weak acid or a 0.1 M solution of a strong acid
- (e) A 0.1 M solution of an acid or a 0.01 M solution of a base
- (f) A solution of pOH 6.0 or one of pOH 8.0

18.16 (a) What is the pH of 0.0111 M NaOH? Is the solution neutral, acidic, or basic?

(b) What is the pOH of 1.35×10^{-3} M HCl? Is the solution neutral, acidic, or basic?

18.18 (a) What are [H3O⁺], [OH⁻], and pOH in a solution with a pH of 9.85?

(b) What are [H3O⁺], [OH⁻], and pH in a solution with a pOH of 9.43?

18.20 How many moles of $H3O^+$ or OH^- must you add to 5.6 L of HA solution to adjust its pH from 4.52 to 5.25? Assume a negligible volume change.

18.45 A 0.035 M solution of a weak acid (HA) has a pH of 4.88. What is the Ka of the acid?

18.48 Chloroacetic acid, CICH₂COOH, has a pKa of 2.87. What are [H3O⁺], pH, [CICH₂COO⁻], and [CICH₂COOH] in 1.25 M CICH₂COOH?

18.50 In a 0.20 M solution, a weak acid is 3.0% dissociated.

(a) Calculate the $[H3O^+]$, pH, $[OH^-]$, and pOH of the solution.

(b) Calculate Ka of the acid.

18.54 Acetylsalicylic acid (aspirin), $HC_9H_7O_4$, is the most widely used pain reliever and fever reducer. Find the pH of 0.018 M aqueous aspirin at body temperature (Ka at 37 °C = 3.6×10^{-4}).

18.55 Formic acid, HCOOH, the simplest carboxylic acid, is used in the textile and rubber industries and is secreted as a defense by many species of ants (family Formicidae). Calculate the percent dissociation of 0.75 M HCOOH.

18.65 (a) What is the pH of 0.150 M KCN?

(b) What is the pH of 0.40 M triethylammonium chloride, (CH₃CH₂)₃NHCl?

18.67 Sodium hypochlorite solution, sold as chlorine bleach, is potentially dangerous because of the basicity of CIO⁻, the active bleaching ingredient. What is $[OH^-]$ in an aqueous solution that is 6.5% NaClO by mass? What is the pH of the solution? (Assume d of solution = 1.0 g/mL.)

SUPPLEMENTARY HOMEWORK

- S1. Which of the following is not a conjugate acid-base pair?
 - a. CH3COOH and CH3COO-
 - b. CH3NH3+ and CH3NH2
 - c. H2SO3 and HSO4-
 - d. HPO4²⁻ and PO4³⁻
 - e. HCOOH and HCOO-
- S2. Which of the following represents the most acidic solution?
 - a. [H+] = 0.15 M
 - b. [H+] = 1.0x10⁻¹⁴ M
 - c. pH = 3.6
 - d. [OH-] = 1.0x10-13 M
 - e. pOH = 13.4

S3. Arrange the solutions in order of increasing acidity:

- I a solution with $[H_3O^+] = 4.2 \times 10^{-6} M$
- II lemonade, pH = 2.65
- III 0.25 M nitric acid
- IV pickle juice, pH = 3.10
- a. I-IV-II-III
- b. II-IV-III-I
- c. III-II-IV-I
- d. IV-I-II-III
- e. III-II-I-IV
- **S4.** Write the acid ionization constant expression for the ionization of the hydrogen sulfate ion, HSO⁺, in aqueous solution.

- **S5.** Lactic Acid is a weak acid with $K_a = 1.4 \times 10^{-4}$. Calculate the pH, pOH and percent protonation of a 0.05 M solution of sodium lactate.
- **S6.** Aniline is a weak base with $K_b = 4.3 \times 10^{-10}$. Calculate the pH, pOH and percent dissociation (of the Anilium ion) of a solution of 0.07 M Anilinium Bromide.
- **S7.** Tellurous Acid, H₂TeO₃, is a diprotic acid with acid dissociation constants,

 $K_a' = 3.0 \times 10^{-3}$ and

Ka["] = 2.0x10⁻⁸

a) Calculate the pH and pOH of a 1.20 M solution of Tellurous Acid (H_2TeO_3) .

b) Calculate the pH and pOH of a 0.25 M solution of potassium tellurite (Na_2TeO_3)

S8. The pH of a 0.15 M solution of Morphine ($C_{17}H_{19}O_3N$) is 10.5. Calculate the Base Equilibrium Constant, K_b, for Morphine.