SALT pH Review Questions (Chap. 18)

Lactic Acid (Hlac) has an Acid Dissociation Constant of 1.4×10^{-4} What is the pH of 0.03 M Potassium Lactate (KLac)?
 Answer: $\mathrm{pH}=8.2$

Aniline (Anil) has a Base Equilibrium Constant of 4.3×10^{-10} What is the pH of 0.05 M Anilinium Chloride (AnilHCl)? Answer: $\mathrm{pH}=3.0$

Formic Acid (HForm) has an Acid Dissociation Constant of 1.8×10^{-4} What is the pH of 0.10 M Lithium Formate (LiForm)?
Answer: $\mathrm{pH}=8.4$

Quinoline (Quin) has a Base Equilibrium Constant of 6.0×10^{-10} What is the pH of 0.002 M Anilinium Chloride (AnilHCI) Answer: $\mathrm{pH}=3.7$

CHEM 1423
 Chapter 18
 Homework Questions

TEXTBOOK HOMEWORK

18.15 Which solution has the higher pH ? Explain.
(a) A 0.1 M solution of an acid with $\mathrm{Ka}=1 \times 10^{-4}$ or one with $\mathrm{Ka}=4 \times 10^{-5}$
(b) A 0.1 M solution of an acid with $\mathrm{pKa}=3.0$ or one with $\mathrm{pKa}=3.5$
(c) A 0.1 M solution or a 0.01 M solution of a weak acid
(d) A 0.1 M solution of a weak acid or a 0.1 M solution of a strong acid
(e) A 0.1 M solution of an acid or a 0.01 M solution of a base
(f) A solution of pOH 6.0 or one of pOH 8.0
18.16 (a) What is the pH of 0.0111 M NaOH ? Is the solution neutral, acidic, or basic?
(b) What is the pOH of $1.35 \times 10^{-3} \mathrm{M} \mathrm{HCl}$? Is the solution neutral, acidic, or basic?
18.18 (a) What are $\left[\mathrm{H} 3 \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and pOH in a solution with a pH of 9.85 ?
(b) What are $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and pH in a solution with a pOH of 9.43 ?
18.20 How many moles of $\mathrm{H}_{3}{ }^{+}$or OH^{-}must you add to 5.6 L of HA solution to adjust its pH from 4.52 to 5.25 ? Assume a negligible volume change.
18.45 A 0.035 M solution of a weak acid (HA) has a pH of 4.88. What is the Ka of the acid?
18.48 Chloroacetic acid, $\mathrm{ClCH}_{2} \mathrm{COOH}$, has a pKa of 2.87. What are $\left[\mathrm{H}_{3}{ }^{+}\right]$, $\mathrm{pH},\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]$, and $\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]$ in $1.25 \mathrm{M} \mathrm{ClCH}_{2} \mathrm{COOH}$?
18.50 In a 0.20 M solution, a weak acid is 3.0% dissociated.
(a) Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$, and pOH of the solution.
(b) Calculate Ka of the acid.
18.54 Acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, is the most widely used pain reliever and fever reducer. Find the pH of 0.018 M aqueous aspirin at body temperature (Ka at $37^{\circ} \mathrm{C}=3.6 \times 10^{-4}$).
18.55 Formic acid, HCOOH , the simplest carboxylic acid, is used in the textile and rubber industries and is secreted as a defense by many species of ants (family Formicidae). Calculate the percent dissociation of 0.75 M HCOOH .
18.65 (a) What is the pH of 0.150 M KCN ?
(b) What is the pH of 0.40 M triethylammonium chloride, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NHCl}$?
18.67 Sodium hypochlorite solution, sold as chlorine bleach, is potentially dangerous because of the basicity of ClO^{-}, the active bleaching ingredient. What is $\left[\mathrm{OH}^{-}\right]$in an aqueous solution that is $6.5 \% \mathrm{NaClO}$ by mass? What is the pH of the solution? (Assume d of solution $=1.0 \mathrm{~g} / \mathrm{mL}$.)

SUPPLEMENTARY HOMEWORK

S1. Which of the following is not a conjugate acid-base pair?
a. CH 3 COOH and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
b. $\mathrm{CH}_{3} \mathrm{NH} 3+$ and $\mathrm{CH} 3 \mathrm{NH}_{2}$
c. $\mathrm{H}_{2} \mathrm{SO}_{3}$ and HSO^{-}
d. $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$
e. HCOOH and HCOO^{-}

S2. Which of the following represents the most acidic solution?
a. $\left[\mathrm{H}^{+}\right]=0.15 \mathrm{M}$
b. $[H+]=1.0 \times 10-14 \mathrm{M}$
c. $\mathrm{pH}=3.6$
d. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-13} \mathrm{M}$
e. $\mathrm{pOH}=13.4$

S3. Arrange the solutions in order of increasing acidity:
I a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.2 \times 10^{-6} \mathrm{M}$
II lemonade, $\mathrm{pH}=2.65$
III 0.25 M nitric acid
IV pickle juice, $\mathrm{pH}=3.10$
a. I-IV-II-III
b. II-IV-III-I
c. III-II-IV-I
d. IV-I-II-III
e. III-II-I-IV

S4. Write the acid ionization constant expression for the ionization of the hydrogen sulfate ion, HSO_{4}, in aqueous solution.

S5. Lactic Acid is a weak acid with $\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-4}$. Calculate the $\mathrm{pH}, \mathrm{pOH}$ and percent protonation of a 0.05 M solution of sodium lactate.

S6. Aniline is a weak base with $\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}$. Calculate the $\mathrm{pH}, \mathrm{pOH}$ and percent dissociation (of the Anilium ion) of a solution of 0.07 M Anilinium Bromide.

S7. Tellurous Acid, $\mathrm{H}_{2} \mathrm{TeO}_{3}$, is a diprotic acid with acid dissociation constants,

$$
K_{a}^{\prime}=3.0 \times 10^{-3} \text { and }
$$

$$
\mathrm{K}_{\mathrm{a}}{ }^{\prime \prime}=2.0 \times 10^{-8}
$$

a) Calculate the pH and pOH of a 1.20 M solution of Tellurous Acid $\left(\mathrm{H}_{2} \mathrm{TeO}_{3}\right)$.
b) Calculate the pH and pOH of a 0.25 M solution of potassium tellurite ($\mathrm{Na}_{2} \mathrm{TeO}_{3}$)

S8. The pH of a 0.15 M solution of Morphine $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}\right)$ is 10.5 . Calculate the Base Equilibrium Constant, K_{b}, for Morphine.

