CHEM 1423 Chapter 19 Homework Questions

TEXTBOOK HOMEWORK

- **19.12** Find the pH of a buffer that consists of 1.3 M sodium phenolate (C_6H_5ONa) and 1.2 M phenol (C_6H_5OH) (pKa of phenol = 10.00).
- **19.15** Find the pH of a buffer that consists of 0.50 M methylamine (CH_3NH_2) and 0.60 M CH_3NH_3Cl (pKb of $CH_3NH_2 = 3.35$).
- **19.16** What is the component concentration ratio, $[Pr^-]/[HPr]$, of a buffer that has a pH of 5.44 (K_a of HPr = 1.3×10^{-5})?
- **19.18** A buffer containing 0.2000 M of acid, HA, and 0.1500 M of its conjugate base, A⁻, has a pH of 3.35. What is the pH after 0.0015 mol of NaOH is added to 0.5000 L of this solution?
- **19.19** A buffer that contains 0.40 M base, B, and 0.25 M of its conjugate acid, BH⁺, has a pH of 8.88. What is the pH after 0.0020 mol of HCl is added to 0.25 L of this solution?
- **19.42**(C) Find the pH during the titration of 20.00 mL of 0.1000 M triethylamine, $(CH_3CH_2)_3N$ (Kb = $5.2x10^{-4}$), with 0.1000 M HCl solution after the addition of 15.00 mL of titrant.
- **19.50** The solubility of silver carbonate is 0.032 M at 20 °C. Calculate its Ksp.
- **19.56** Calculate the molar solubility of Ca(IO₃)₂ in (a) 0.060 M Ca(NO₃)₂ and (b) 0.060 M NaIO₃. (See Appendix C.). Also calculate the molar solubility in pure water.

SUPPLEMENTARY HOMEWORK

Buffers

S1. In a buffer solution, if $[A^-] > [HA]$, which of the following must be true?

- $a.\ pH < pK_{a}$
- b. $pH = pK_a$
- c. $pH > pK_a$
- d. pH < 7.00
- e. pH > 7.00

S2. A buffer solution is 0.080 M in lactic acid ($K_a = 1.8 \times 10^{-4}$) and 0.070 M in sodium lactate. The pH of the solution is

- a. 2.86.
- b. 3.68.
- c. 3.80.
- d. 4.18.
- e. 4.62.

S3. Which acid, in combination with its conjugate base, would be the best choice to make a buffer of pH = 4.35?

- a. acetic acid ($K_a = 1.8 \times 10^{-5}$)
- b. benzoic acid ($K_a = 6.3 \times 10^{-5}$)
- c. formic acid ($K_a = 1.8 \times 10^{-4}$)
- d. hydrofluoric ($K_a = 7.2 \times 10^{-4}$)
- e. nitrous acid ($K_a = 4.5 \times 10^{-4}$)

- **S4.** If a buffer is made up using 1.00 mole of a weak acid (pK $_a$ = 5.00) and 0.90 mole of its conjugate base, which of the following must be true?
 - a. pH < 5.00
 - b. pH = 5.00
 - c. pH > 5.00
 - d. pH = 7.00
 - e. pH > 7.00
- **S5.** For each of the solutions below, indicate whether the solution would be a buffer.
 - a) A solution prepared by adding 1 L of 0.50 M NaOH to 2 L of 0.5 M HAc (acetic acid)
 - b) A solution prepared by adding 1 L of 1.0 M HCl to 2 L of 0.80 M NaAc (sodium acetate)
 - c) A solution prepared by adding 1 L of 0.50 M H_2CO_3 to 1 L of 0.50 M K_2CO_3
 - d) A solution prepared by adding 1 L of 0.50 M HCl to 2 L of 0.50 M K₂CO₃
 - e) A solution prepared by adding 3 L of 0.50 M HCl to 2 L of 0.50 M K_2CO_3
 - f) A solution prepared by adding 5 L of 0.50 N HCl to 2 L of 0.50 M K₂CO₃
 - g) A solution prepared by adding 1 L of 0.25 M HNO $_3$ to 1 L of 0.50 M K_2 Prop (potassium propanoate)
 - h) A solution prepared by adding 1 L of 0.25 M NaOH to 1 L of 0.50 M K_2 Prop (potassium propanoate)

- **S6.** The following **independent** questions are on pH calculations in solutions of Arsenic Acid (H₃AsO₄) and its various anions. H₃AsO₄ is a triprotic acid with Acid Dissociation Constants: $K_a' = 6.0 \times 10^{-3}$, $K_a'' = 1.0 \times 10^{-7}$, $K_a''' = 3.2 \times 10^{-12}$
 - a) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M H₃AsO₄ with 1.0 L of 0.80 M KOH.
 - b) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M H₃AsO₄ with 2.0 L of 0.80 M KOH.
 - c) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M H₃AsO₄ with 4.0 L of 0.80 M KOH.
 - d) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M Na₃AsO₄ with 1.0 L of 0.80 M HNO₃.
 - e) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M Na₃AsO₄ with 2.0 L of 0.80 M HNO₃.
 - f) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M Na₃AsO₄ with 4.0 L of 0.80 M HNO₃.
 - g) What will be the pH of a buffer solution containing $[H_2AsO_4^-] = 0.40$ M and $[HAsO_4^{2-}] = 0.60$ M?
 - h) What will be the pH of a buffer solution containing $[HAsO_4^{2-}] = 0.40 \text{ M}$ and $[AsO_4^{3-}] = 0.15 \text{ M}$?
 - i) What value of the ratio, $[H_2AsO_4^-]/[H_3AsO_4]$, is required to prepare a buffer with pH = 2.60?
 - j) What value of the ratio, $[HAsO_4^{2-}]/[AsO_4^{3-}]$, is required to prepare a buffer with pH = 10.90?

Titration

- **S7.** 138. mL of 0.105 M KOH was required to completely titrate a 25.00 mL sample of H₃PO₄.
 - Determine the Molarity of the H₃PO₄ sample.
- **S8.** Consider the weak base, pyridine $[C_5H_5N \equiv Pyr]$, which has $K_b = 1.7x10^{-9}$. Titration of pyridine with a strong acid causes formation of the pyridinium ion $[C_5H_5NH^+ \equiv PyrH^+]$.
 - (a) Calculate the pH of a solution formed by adding 30.00 mL of 0.20 M HNO₃ to 50.00 mL of 0.20 M pyridine.
 - (b) Calculate the pH of a solution formed by adding 50.00 mL of 0.20 M HNO₃ to 50.00 mL of 0.20 M pyridine.
- **S9.** Vitamin C ($C_6H_8O_6$, M = 176.) is a monoprotic acid. To analyze a Vitamin C capsule weighing 0.64 grams by titration, 23.6 mL of 0.120 M NaOH was required. Calculate the mass percent of Vitamin C in the capsule.
- **S10.** When 6.00 grams of a sample of impure Strontium Hydroxide [Sr(OH)₂, M = 121.6] is titrated with 0.340 M HNO₃, it takes 224. mL of the strong acid to completely titrate the base. Calculate the mass percent of impurity in the Strontium Hydroxide sample.

Solubility Product

- **S11.** The solubility product of the slightly soluble salt, Ag_2CO_3 , is $K_{sp} = 6.2 \times 10^{-12}$.
 - a) What is the solubility and the [Ag⁺] and [CO₃²⁻] concentrations in pure water?
 - b) What is the solubility in a solution containing Ag₂CO₃ and 0.20 M AgNO₃?
 - c) What is the concentration of silver ions, $[Ag^+]$ in a solution containing Ag_2CO_3 and 0.10 M K_2CO_3 ?

- **S12.** The solubility products of two sparingly soluble Bromide (Br⁻) salts are: AgBr $K_{sp} = 5.4 \times 10^{-13}$, HgBr₂ $K_{sp} = 6.2 \times 10^{-20}$ Consider a solution which initially contains 5.0×10^{-5} M Ag⁺(aq) and 5.0×10^{-5} M Hg²⁺(aq). KBr (a strong electrolyte) is added until [Br⁻] = 2.0×10^{-8} M. Which of the above salts (AgBr and HgBr₂) will precipitate?
- S13. Mercury(I) Sulfate, Hg_2SO_4 , is a sparingly soluble salt with $K_{sp} = 6.5 \times 10^{-7}$. If 1200 mL of 0.010 M $K_2SO_4(aq)$ is mixed with 800 mL of 0.020 M $HgNO_3(aq)$, calculate the concentrations of $[Hg^+]$ and $[SO_4^{2-}]$ in the resulting solution and **determine whether or not** $Hg_2SO_4(s)$ will precipitate.

Amino Acids

S14. Consider the amino acid, Lysine. The most positive and most negative forms are shown below:

The three pKa's are: pKa'(α -COOH) = 2.18 pKa''(α -NH₃⁺) = 8.95 pKa'''(ϵ -NH₃⁺) = 10.53

- a) What is the isoelectric point?
- b) At what pH does one have 100% Lys⁺.
- c) At what pH does one have 50% Lys and 50% Lys-
- d) What is the composition of the solution at pH = 2.18