CHEM 1423 Chapter 20 Homework Questions

TEXTBOOK HOMEWORK

- **20.14** Without using Appendix B predict the sign of \Box S^o for
 - (a) $CaCO_3(s) + 2 HCl(aq) \square CaCl_2(aq) + H_2O(l) + CO_2(g)$
 - (b) $2 \operatorname{NO}(g) + O_2(g) \square 2 \operatorname{NO}_2(g)$
 - (c) 2 KClO₃(s) \Box 2 KCl(s) + 3 O₂(g)
- **20.16** Predict the sign of \square S for each process:
 - (a) $C_2H_5OH(g)$ (350 K and 500 torr) $\Box C_2H_5OH(g)$ (350 K and 250 torr)
 - (b) $N_2(g)$ (298 K and 1 atm) \square $N_2(aq)$ (298 K and 1 atm)
 - (c) $O_2(aq)$ (303 K and 12 atm) \square $O_2(g)$ (303 K and 12 atm)
- **20.21** Without consulting Appendix B, arrange each group in order of increasing molar entropy (S^o):
 - (a) Glucose ($C_6H_{12}O_6$), Sucrose ($C_{12}H_{22}O_{11}$), Ribose ($C_5H_{10}O_5$)
 - (b) $CaCO_3$, $Ca + C + (3/2) O_2$, $CaO + CO_2$
 - (c) $SF_6(g)$, $SF_4(g)$, $S_2F_{10}(g)$
- **20.28** For each reaction, predict the sign and find the value of $\Box S^{\circ}$:
 - (a) $3 \text{ NO}(g) \square \text{ N}_2 \text{O}(g) + \text{NO}_2(g)$
 - (b) $3 H_2(g) + Fe_2O_3(s) \square 2 Fe(s) + 3 H_2O(g)$
 - (c) $P_4(s) + 5 O_2(g) \square P_4O_{10}(s)$
- **20.40** Calculate $\Box G^{\circ}$ for each reaction using $\Box G_{f^{\circ}}$ values:
 - (a) $2 Mg(s) + O_2(g) \square 2 MgO(s)$
 - (b) $2 CH_3OH(g) + 3 O_2(g) \square 2 CO_2(g) + 4 H_2O(g)$
 - (c) $BaO(s) + CO_2(g) \square BaCO_3(s)$

20.46 One reaction used to produce small quantities of pure H_2 is $CH_3OH(g)$ [] $CO(g) + 2 H_2(g)$

- (a) Determine $\Box H^{\circ}$ and $\Box S^{\circ}$ for the reaction at 298 K
- (b) Assuming that these values are relatively independent of temperature, calculate [] G° at 28 °C, 128 °C, and 228 °C
- (c) What is th significance of the different values of $\Box G^{\circ}$

- **20.48** Use \square H^o and \square S^o values for the following process at 1 atm to find the normal boiling point of Br₂: Br₂(l) \square Br₂(g)
- **20.51** The U.S. government requires automobile fuels to contain renewable component. Fermentation of glucose rom corn yields ethanol, which is added to gasoline to fulfill this requirement.

 $C_6H_{12}O_6(s) \square 2 C_2H_5OH(1) + 2 CO_2(g)$ Calculate $\square H^\circ$, $\square S^\circ$, and $\square G^\circ$ for the reaction at 25 °C. Is the spontaneity of this reaction dependent on T? Explain.

- 20.56 Calculate K at 298 K for each reaction:
 - (a) NO(g) + $(1/2)O_2(g)$ [] NO₂(g)
 - (b) $2 \text{ HCl}(g) \square H_2(g) + \text{Cl}_2(g)$
 - (c) $2 C(\text{graphite}) + O_2(g) \square 2 CO(g)$

20.64 The equilibrium constant for the reaction

- 2 Fe³⁺(aq) + Hg₂²⁺(aq) \Box 2 Fe²⁺(aq) + 2 Hg²⁺(aq) is K_c = 9.1x10⁻⁶ at 298 K
- (a) What is $\Box G^{\circ}$ at this temperature?
- (b) If standard-state concentrations of the reactants and products are mixed, in which direction does the reaction proceed?
- (c) Calculate \Box G when $[Fe^{3+}] = 0.20$ M, $[Hg_2^{2+}] = 0.010$ M, $[Fe^{2+}] = 0.010$ M, and $[Hg^{2+}] = 0.025$ M. In which direction will the reaction proceed to achiece equillibrium?
- **20.74** (a) Write a balanced equation for the gaseous reaction between N_2O_5 and F_2 to form NF₃ and O_2 .
 - (b) Determine $\Box G^{o}_{rxn}$
 - (c) Find $\square G_{rxn}$ at 298 K if $P_{N2O5} = P_{F2} = 0.20$ M, $P_{NF3} = 0.25$ atm and $P_{O2} = 0.50$ atm

SUPPLEMENTARY HOMEWORK

S1. If a reaction is spontaneous at any temperature, then ΔH^{o} is _____ and ΔS^{o} is

- a. positive; positive
- b. positive; negative
- c. zero; positive
- d. negative; positive
- e. negative; negative
- S2. At constant *T* and *P*, in which of the following situations will the reaction never be spontaneous?
 - a. $\Delta H > 0$ and $\Delta S < 0$
 - b. $\Delta H > 0$ and $\Delta S > 0$
 - c. $\Delta H < 0$ and $\Delta S < 0$
 - d. $\Delta H < 0$ and $\Delta S > 0$
 - e. none of the above
- S3. A reaction is exothermic and has a negative value of Δ So. The value of Δ Go for this reaction is therefore:
 - a. negative at all temperatures.
 - b. positive at all temperatures.
 - c. positive above 0°C and negative below 0°C.
 - d. positive above a certain temperature and negative below it.
 - e. negative above a certain temperature and positive below it.
- S4. The reaction $A \rightarrow B$ is **exergonic** at 25 °C and the enthalpy change is +20 kJ. What can be concluded about the entropy change for this reaction?
 - a. $\Delta S > +67 \text{ J/K}$
 - b. $\Delta S > +800 \text{ J/K}$
 - c. $\Delta S < -67 \text{ J/K}$
 - d. No conclusion can be made about ΔS

S5. For the endergonic reaction $C \rightarrow D$, $\Delta S = +20 \text{ J/K}$. For this reaction,

- a. $\Delta G < 0 \& \Delta H < 0$
- b. $\Delta G > 0 \& \Delta H < 0$
- c. $\Delta G < 0 \& \Delta H > 0$
- d. $\Delta G > 0 \& \Delta H > 0$

S6. Consider a sample containing 322 grams of toluene ($C_6H_5CH_3$, M = 92).

Quantity	T _m	T _b	H _{fus} o	□ H _{vap} ^o	Sfus ^o	Svap ^o
Value	-95	+111	6.64	38.1	37.3	99.2 J/mol-
	°C	°C	kJ/mol	kJ/mol	J/mol-K	Κ

(a) Calculate $[]S_{sys}$, $[]S_{surr}$ and $[]S_{univ}$ for the vaporization of 322 grams of toluene at:

(1) 130 °C, (2) 111 °C, (3) 90 °C

(b) Calculate G° for the vaporization of 322 grams of toluene at:
(1) 130 °C, (2) 111 °C, (3) 90 °C

(c) Calculate $[]S_{sys}$, $[]S_{surr}$ and $[]S_{univ}$ for the freezing (crystallization) of 322 grams of toluene at:

(1) -115 °C , (2) -95 °C , (3) -75 °C

- (d) Calculate [] G° for the freezing (crystallization) of 322 grams of toluene at: (1) -115 °C, (2) -95 °C, (3) -75 °C
- S7. A certain reaction has $\Delta H^{\circ} = +177.8 \text{ kJ}$, and $\Delta S^{\circ} = +160.5 \text{ J/K}$. Above or below what temperature (in °C) does it become spontaneous ?

S8. For the reaction shown, $\Delta G^{\circ} = -32.8 \text{ kJ}$ at 25°C.

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

a. Calculate the equilibrium constant for this reaction at 25°C.

b. Is a mixture of the three gases where $p_{N_2} = 3.5$ bar, $p_{H_2} = 1.2$ bar, and p_{NH_3}

= 0.22 bar at equilibrium? Justify your answer.

c. What is the value of ΔG under the conditions of part b?

- S9. For the reaction, $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$, $\Delta H^\circ = +178 \text{ kJ/mol and } \Delta S^\circ = +161 \text{ J/mol-K}$.
 - a. What is the value of ΔG° at 25 °C?
 - b. What is the value of ΔG° at 1500 °C?
 - c. At what temperature, in °C, are the reactants and products in equilibrium? (i.e. $\Delta G^{o} = 0$)

S10. A hypothetical polypeptide, PP, has two structural forms, PP(α) and PP(β). For the transition, PP(α) \rightarrow PP(β), the entropy change is -120 J/mol-K and the enthalpy change is -42 kJ/mol.

This transition is spontaneous _____ (above or below) _____ °C.