CHEM 1423
 Chapter 21
 Homework Questions

TEXTBOOK HOMEWORK

21.5 Consider the following balanced redox reaction:
$\left.16 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+10 \mathrm{Cl}^{-}(\mathrm{aq})\right] 2 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Cl}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(a) Which species is being oxidized?
(b) Which species is being reduced?
(c) Which species is the oxidizing agent?
(d) Which species is the reducing agent?
(e) From which species to which does electron transfer occur?
(f) Write the balanced molecular equation, with K^{+}and $\mathrm{SO}_{4}{ }^{2-}$ as the spectator ions.
21.9 Balance the following skeleton reactions and identify the oxidizing and reducing agents:
(a) $\mathrm{Sb}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{Sb}_{4} \mathrm{O}_{6}+\mathrm{NO}$ (acid)
(b) $\mathrm{Mn}^{2+}+\mathrm{BiO}_{3}^{-} \rightarrow \mathrm{MnO}_{4}^{-}+\mathrm{Bi}^{3+}$ (acid)
(c) $\mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{Pb}(\mathrm{OH})_{3}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{Pb} \quad$ (basic)
21.27 In basic solution, Se^{2} and $\mathrm{SO}_{3}{ }^{2-}$ ions react spontaneously:
$2 \mathrm{Se}^{2-}+2 \mathrm{SO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Se}+6 \mathrm{OH}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \quad E_{\text {cell }}^{o}=0.35 \mathrm{~V}$
(a) Write the balanced half-reactions for the process
(b) Using Appendix D to find $\mathrm{E}_{\mathrm{O}}{ }^{\circ}$, calculate $\mathrm{E}_{\mathrm{Se}}{ }^{\circ}$
21.33 Balance each skeleton reaction, calculate E° cell, and state whether the reaction is spontaneous:
(a) $\mathrm{Ag}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cu}$
(b) $\mathrm{Cd}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cd}^{2+}+\mathrm{Cr}^{3+}$
(c) $\mathrm{Ni}^{2+}+\mathrm{Pb} \rightarrow \mathrm{Ni}+\mathrm{Pb}^{2+}$
21.36 Use the following half-reactions to write three spontaneous reactions, calculate E° cell for each reaction, and rank the strengths of the oxidizing and reducing agents:
(1) $\mathrm{Au}^{+}(\mathrm{aq})+\mathrm{e}^{-} \mathrm{C} \mathrm{Au}(\mathrm{s})$
$\mathrm{E}^{0}=1.69 \mathrm{~V}$
(2) $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{E}^{0}=1.77 \mathrm{~V}$
(3) $\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \mathrm{Cr}(\mathrm{s})$
$E^{0}=-0.74 \mathrm{~V}$
21.45 What is the value of the equilibrium constant for the reaction between each pair at $25^{\circ} \mathrm{C}$? (a) $\mathrm{Ni}(\mathrm{s})$ and $\mathrm{Ag} 1(\mathrm{aq})$
(b) $\mathrm{Fe}(\mathrm{s})$ and $\mathrm{Cr} 31(\mathrm{aq})$
21.50 What are E° cell and DG of a redox reaction at $25^{\circ} \mathrm{C}$ for which $\mathrm{n}=2$ and $\mathrm{K}=0.065$?
21.52 A voltaic cell consists of an $\mathrm{Mn} \mid \mathrm{Mn}^{+}$half-cell and a $\mathrm{Pb} \mid \mathrm{Pb}^{+}$half-cell. Calculate $\left[\mathrm{Pb}^{2+}\right]$ when $\left[\mathrm{Mn}^{2+}\right]$ is 1.4 M and Ecell is 0.44 V .
21.76 Electrolysis of molten MgCl_{2} is the final production step in the isolation of magnesium from seawater by the Dow process. Assuming that 45.6 g of Mg metal forms,
(a) How many moles of electrons are required?
(b) How many coulombs are required?
(c) How many amps will produce this amount in 3.50 h ?
21.80 How many seconds does it take to deposit 65.5 g of Zn on a steel gate when 21.0 A is passed through a ZnSO_{4} solution?
21.84 Zinc plating (galvanizing) is an important means of corrosion protection. Although the process is done customarily by dipping the object into molten zinc, the metal can also be electroplated from aqueous solutions. How many grams of zinc can be deposited on a steel tank from a ZnSO_{4} solution when a 0.855 A current flows for 2.50 days?

SUPPLEMENTARY HOMEWORK

S1. Which one of these changes describes an oxidation half-reaction?
a. decrease in oxidation number
b. loss of electrons
c. electrons as reactants
d. reactant acting as an oxidizing agent
e. pure oxygen becoming oxide ion

S2. If cadmium metal and the Fe(III) ion are mixed in aqueous solution, a solution containing $\mathrm{Cd}(\mathrm{II})$ and $\mathrm{Fe}(\mathrm{II})$ results. The balanced equation for this process is
a. $\mathrm{Cd}(\mathrm{s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})$.
b. $\mathrm{Cd}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})$.
c. $2 \mathrm{Cd}(\mathrm{s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Cd}^{2+}(\mathrm{aq})$.
d. $2 \mathrm{Cd}(\mathrm{s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})$.
e. $2 \mathrm{Cd}(\mathrm{s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Cd}^{2+}(\mathrm{aq})$.

S3. Which cell notation represents a battery constructed using zinc and iron, with electrons flowing from zinc to iron?
a. $\mathrm{Fe}^{3+}(\mathrm{aq})\left|\mathrm{Fe}^{2+}(\mathrm{aq}) \| \mathrm{Zn}(\mathrm{s})\right| \mathrm{Zn}^{2+}(\mathrm{aq})$
b. $\mathrm{Fe}^{3+}(\mathrm{aq})|\mathrm{Fe}(\mathrm{s}) \| \mathrm{Zn}(\mathrm{s})| \mathrm{Zn}^{2+}(\mathrm{aq})$
c. $\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Fe}^{3+}(\mathrm{aq})\right| \mathrm{Fe}^{2+}(\mathrm{aq})$
d. $\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Fe}^{3+}(\mathrm{aq})\right| \mathrm{Fe}(\mathrm{s})$
e. $\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right||\mathrm{Fe}(\mathrm{s})| \mathrm{Fe}^{3+}(\mathrm{aq})$

S4.Consider the cell reaction

$$
\mathrm{Sn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) .
$$

The value of E^{c} cell is 0.447 V at $25^{\circ} \mathrm{C}$. Calculate the value of $\Delta \mathrm{G}^{\circ}$ and K for this cell.

S5. The value of $\mathrm{E}_{\text {cell }}$ at $25^{\circ} \mathrm{C}$ for the cell shown below is +1.27 V . What is the value of $\mathrm{EO}_{\text {cell }}$?

$$
\mathrm{Cd}(\mathrm{~s})\left|\mathrm{Cd}^{2+}(0.10 \mathrm{M}) \| \mathrm{Ag}^{+}(2.0 \mathrm{M})\right| \mathrm{Ag}(\mathrm{~s})
$$

S6. The value of $\mathrm{EO}_{\text {cell }}$ for the cell shown below is +1.41 V .

$$
\mathrm{Al}(\mathrm{~s})\left|\mathrm{Al}^{3+}(\mathrm{aq}) \| \mathrm{Ni}^{2+}(\mathrm{aq})\right| \mathrm{Ni}(\mathrm{~s})
$$

What is the value of $\mathrm{E}_{\text {cell }}$ at $25^{\circ} \mathrm{C}$ if the concentration of $\mathrm{Al}^{3+}(\mathrm{aq})$ is 0.050 M , and of $\mathrm{Ni}^{2+}(\mathrm{aq}), 2.0 \mathrm{M}$?

S7. The EPA recommended maximum concentration of $\mathrm{Zn}^{2+}[\mathrm{M}(\mathrm{Zn})=65.4$ $\mathrm{g} / \mathrm{mol}$] in drinking water is $5 . \mathrm{mg} / \mathrm{L}$. The amount of Zn in a sample of water can be determined by measuring the voltage of an electrochemical cell in which the reference electrode (cathode) has a standard concentration [say, 0.20 M $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$] and the sample electrode (anode) has the water sample. This cell can be designated as: $\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{xx} \mathrm{M})\right|\left|\mathrm{Zn}^{2+}(0.20 \mathrm{M})\right| \mathrm{Zn}(\mathrm{s})$.

The cell potential was measured as +0.078 V . Determine the concentration of Zn^{2+} in the sample, in mg / L.

S8. An electrochemical cell is prepared with $0.50 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ in the reference compartment (cathode) and a saturated solution of lead iodate, $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{aq})$, in the sample compartment (anode). The measured cell voltage is: 0.120 V .

Calculate the Solubility Product, $\mathrm{K}_{\text {sp }}$, of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$.

S9. An electrochemical cell is prepared with $0.25 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ in the reference compartment (cathode) and a saturated solution of silver phosphate, $\mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{aq})$, in the sample compartment (anode). The measured cell voltage is: 0.195 V.

Calculate the Solubility Product, K_{sp}, of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$.
S10.A current of $2.5 \mathrm{~A}(1 \mathrm{Ampere}=1 \mathrm{C} / \mathrm{s})$ is passed through a solution of Copper(II) Bromide for a period of 24.0 hours.
How many grams of $\mathrm{Cu}(\mathrm{s})$ will be plated out?

S11 on next page

ELECTROLYSIS (Table for S11)

Note: As discussed in class, you may assume that the reduction and oxidation potentials are approximately the same in the molten salt as in aqueous solution.

Some Reduction Potentials

$$
\begin{array}{lr}
2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-} & \mathrm{E}_{\text {red }}^{0}=-0.83 \mathrm{~V} \\
\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn} & \mathrm{E}_{\text {red }}^{\mathrm{r}}=-1.18 \mathrm{~V} \\
\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn} & \mathrm{E}_{\text {red }}^{\mathrm{o}}=-0.76 \mathrm{~V} \\
\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \mathrm{C} \mathrm{Al} & -1.66 \mathrm{~V} \\
\mathrm{Na}^{+}+3 \mathrm{e}^{-} \square \mathrm{Na} & \mathrm{E}_{\text {red }}^{\mathrm{o}}=-2.71 \mathrm{~V} \\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \mathrm{C} \mathrm{Fe} & \mathrm{E}_{\text {red }}^{\mathrm{o}}=-0.44 \mathrm{~V}
\end{array}
$$

Some Oxidation Potentials

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$

$$
\mathrm{E}_{\text {oxid }}^{0}=-1.23 \mathrm{~V}
$$

$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$

$$
\mathrm{E}_{\text {oxid }}^{0}=-0.54 \mathrm{~V}
$$

$2 \mathrm{Br}^{-}\left[\mathrm{Br}_{2}+2 \mathrm{e}^{-}\right.$
$\mathrm{E}^{0}{ }_{\text {oxid }}=-1.07 \mathrm{~V}$
$2 \mathrm{~F}^{-} \rightarrow \mathrm{F}_{2}+2 \mathrm{e}^{-}$

$$
\mathrm{E}_{\text {oxid }}^{o}=-2.87 \mathrm{~V}
$$

S11. For each of the systems below, name (1) the products of electrolysis and the electrode [Positive Anode or Negative Cathode) at which they form, (2) The minimum voltage required for the electrolysis, (3) the balanced net electrolysis rection.
(a) Molten AlF_{3} (liq)
(b) A mixture of molten $\mathrm{NaI}(\mathrm{liq})$ and molten ZnBr_{2} (liq)
(c) An aqueous solution of $\mathrm{MnF}_{2}(\mathrm{aq})$
(d) An aqueous solution of $\mathrm{FeI}_{2}(\mathrm{aq})$
(e) An aqueous solution of $\operatorname{NaI}(\mathrm{aq})$
(f) An aqueous solution of $\mathrm{ZnF}_{2}(\mathrm{aq})$

