CHEM 1423

Chapter 23

Homework Questions

TEXTBOOK HOMEWORK

- **23.6** Write balanced nuclear equations for the following:
- (a) Alpha decay of 92²³⁴U
- (b) Electron capture by Neptunium-232
- (c) Positron emission by 7^{12} N
- **23.8** Write balanced nuclear equations for the following:
- (a) Formation of 22⁴⁸Ti through positron emission
- (b) Formation of silver-107 through electron capture
- (c) Formation of polonium-206 through α decay
- **23.9** Write balanced nuclear equations for the following:
- (a) Formation of 95^{241} Am through β decay
- (b) Formation of $_{89}^{228}$ Ac through β decay
- (c) Formation of $_{83}^{201}Bi$ through α decay
- 23.12 What is the most likely mode of decay for each?
- (a) 92^{238} U
- (b) 24⁴⁸Cr
- (c) $_{25}^{50}Mn$
- **23.13** What is the most likely mode of decay for each?
- (a) 47¹¹¹Ag
- (b) ₁₇⁴¹Cl
- (c) 44^{110} Ru
- **23.34** Name the unidentified species, and write a balanced nuclear equation for each transmutation:
- (a) gamma irradiation of a nuclide yields a proton, a neutron, and ²⁹Si
- (b) bombardment of ²⁵²Cf with ¹⁰B yields five neutrons and a nuclide
- (c) bombardment of ²³⁸U with a particle yields three neutrons and ²³⁹Pu

SUPPLEMENTARY HOMEWORK

- **S1.** Use the nuclear mass table (at bottom) to calculate (a) the Binding Energy, and (b) the Binding Energy per nucleon for each of the following nuclei (in kJ/mol).
 - a. ³¹P
 - b. 190Os
 - c. ²³⁹Pu
- **S2.** Use the nuclear mass table (at bottom) to calculate ΔE for the following nuclear reactions, in kJ/mol
 - a. $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{138}_{56}Ba + ^{86}_{36}Kr + 12^{1}_{0}n$
 - b. ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
 - c. ${}_{3}^{7}Li + {}_{1}^{1}H \rightarrow {}_{0}^{1}n + {}_{4}^{7}Be$

Nucleus Atomic Mass

$_{1}{}^{1}H$	1.008	g/mol
$_0{}^1$ n	1.009	
$_{1}^{2}H$	2.014	
$_1$ ³ H	3.016	
₂ ⁴ He	4.003	
⁷ Li	7.016	
⁷ Be	7.017	
31 P	30.974	
⁸⁶ Kr	85.910	
¹³⁸ Ba	137.911	
¹⁹⁰ Os	189.958	
^{235}U	235.044	
²³⁹ Pu	239.052	