CHEM 1423

Chapter 23
Homework Questions

TEXTBOOK HOMEWORK

23.6 Write balanced nuclear equations for the following:
(a) Alpha decay of ${ }_{92}{ }^{234} \mathrm{U}$
(b) Electron capture by Neptunium-232
(c) Positron emission by $7^{12} \mathrm{~N}$
23.8 Write balanced nuclear equations for the following:
(a) Formation of ${ }_{22}{ }^{48} \mathrm{Ti}$ through positron emission
(b) Formation of silver-107 through electron capture
(c) Formation of polonium-206 through α decay
23.9 Write balanced nuclear equations for the following:
(a) Formation of ${ }_{95}{ }^{241} \mathrm{Am}$ through β^{-}decay
(b) Formation of ${ }_{89}{ }^{228} \mathrm{Ac}$ through β^{-}decay
(c) Formation of $83^{201} \mathrm{Bi}$ through α decay
23.12 What is the most likely mode of decay for each?
(a) ${ }_{92}{ }^{238} \mathrm{U}$
(b) $24^{48} \mathrm{Cr}$
(c) $25^{50} \mathrm{Mn}$
23.13 What is the most likely mode of decay for each?
(a) $47^{111} \mathrm{Ag}$
(b) ${ }_{17}{ }^{41} \mathrm{Cl}$
(c) $44^{110} \mathrm{Ru}$
23.34 Name the unidentified species, and write a balanced nuclear equation for each transmutation:
(a) gamma irradiation of a nuclide yields a proton, a neutron, and ${ }^{29} \mathrm{Si}$
(b) bombardment of ${ }^{252} \mathrm{Cf}$ with ${ }^{10} \mathrm{~B}$ yields five neutrons and a nuclide
(c) bombardment of ${ }^{238} \mathrm{U}$ with a particle yields three neutrons and ${ }^{239} \mathrm{Pu}$

SUPPLEMENTARY HOMEWORK

S1. Use the nuclear mass table (at bottom) to calculate (a) the Binding Energy, and (b) the Binding Energy per nucleon for each of the following nuclei (in $\mathrm{kJ} / \mathrm{mol}$).
a. ${ }^{31} \mathrm{P}$
b. ${ }^{190} \mathrm{Os}$
c. ${ }^{239} \mathrm{Pu}$

S2. Use the nuclear mass table (at bottom) to calculate $\Delta \mathrm{E}$ for the following nuclear reactions, in $\mathrm{kJ} / \mathrm{mol}$
a. ${ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{56}^{138} \mathrm{Ba}+{ }_{36}^{86} \mathrm{Kr}+12{ }_{0}^{1} n$
b. ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} n$
c. ${ }_{3}^{7} L i+{ }_{1}^{1} H \rightarrow{ }_{0}^{1} n+{ }_{4}^{7} \mathrm{Be}$

Nucleus Atomic Mass

${ }_{1}{ }^{1} \mathrm{H}$	1.008	$\mathrm{~g} / \mathrm{mol}$
$0^{1} \mathrm{n}$	1.009	
$1^{2} \mathrm{H}$	2.014	
${ }_{1}{ }^{3} \mathrm{H}$	3.016	
$2^{4} \mathrm{He}$	4.003	
${ }^{7} \mathrm{Li}$	7.016	
${ }^{7} \mathrm{Be}$	7.017	
${ }^{31} \mathrm{P}$	30.974	
${ }^{86} \mathrm{Kr}$	85.910	
${ }^{138} \mathrm{Ba}$	137.911	
${ }^{190} \mathrm{Os}$	189.958	
${ }^{235} \mathrm{U}$	235.044	
${ }^{239} \mathrm{Pu}$	239.052	

