THE PROPERTIES OF SOLUTIONS

Chapter 13 Outline

Text Problems: \#43, 47, 49, 53, 55, 72, 76, 80

+ Supplementary Questions (attached)
Text Sample Problems: The text has a number of excellent sample problems (solved in detail) in each section. I would recommend that you study these problems + the "follow up" problems, which have brief solutions at the end of the chapter.

Sect. Title and Comments

1. Types of Solutions: Intermolecular Forces and Solubility

Required?

$\longrightarrow \quad$ YES
2. Why Substances Dissolve: Understanding the Solution Process YES
3. Solubility as an Equilibrium Process YES

You are NOT responsible for Henry's Law to determine solubilities of gases in liquids. I will mention it only briefly.
4. Concentration Terms YES
5. Colligative Properties of Solutions YES

Skip the subsection on Volatile Non-Electrolyte Solutions

Chapter 13

Supplementary Homework Questions

S1. The process of dissolving is favored if the \qquad interactions are weaker than the
\qquad interations.
a. solute-solvent; solute-solute and solvent-solvent
b. solvent-solvent; solute-solute and solute-solvent
c. solute-solute and solvent-solvent; solute-solvent
d. solute-solvent and solvent-solvent; solute-solute
e. solute-solute; solute-solvent and solvent-solvent

S2. Two liquids which mix together in all proportions are said to be \qquad ; they mix because \qquad .
a. miscible; their intermolecular interactions are dissimilar
b. miscible; their intermolecular interactions are similar
c. miscible; their densities are dissimilar
d. immiscible; their intermolecular interactions are similar
e. immiscible; their intermolecular interactions are dissimilar

S3. The concentration unit one part per billion (one ppb) is equivalent to one \qquad of solute per of solution.
a. mg ; g
b. $\mu \mathrm{g} ; \mathrm{g}$
c. mg ; kg
d. $\mu \mathrm{g}$; kg
e. ng; kg

S4. If 750 mL of a certain solution contains $50.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$, the sodium ion concentration, $\left[\mathrm{Na}^{+}\right]$, is
a. 0.264 M
b. 0.315 M
c. 0.469 M
d. 0.560 M
e. 0.939 M

S5. The freezing points of the following aqueous solutions, from highest to lowest, are:
0.25 m glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$0.15 \mathrm{~m} \mathrm{CaCl}_{2}$
$0.20 \mathrm{~m} \mathrm{NH}_{4} \mathrm{NO}_{3}$
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{CaCl}_{2}$
b. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{CaCl}_{2}>\mathrm{NH}_{4} \mathrm{NO}_{3}$
c. $\mathrm{CaCl}_{2}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{NH}_{4} \mathrm{NO}_{3}$
d. $\mathrm{CaCl}_{2}>\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
e. $\mathrm{NH}_{4} \mathrm{NO}_{3}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}>\mathrm{CaCl}_{2}$

S6. A sample of the strong electrolyte, potassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{M}=212.3\right)$ is dissolved in 400 grams of water. The boiling point of the solution is $102.65^{\circ} \mathrm{C}$. How many grams of $\mathrm{K}_{3} \mathrm{PO}_{4}$ are contained in the mixture?

S7. The vapor pressure of liquid toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}(1)$ [M=92], is 94.0 torr at $40^{\circ} \mathrm{C}$. When 25.0 grams of an unknown non-volatile compound is dissolved in 184 grams of toluene at $40^{\circ} \mathrm{C}$, the vapor pressure of the mixture is 84.6 torr. Calculate the Molar Mass of the unknown compound, in $\mathrm{g} / \mathrm{mol}$.

S8. An aqueous solution of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, contains $285 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$ in 400 mL solution, and has a density of $1.35 \mathrm{~g} / \mathrm{mL}$. Calculate
(a) the weight $\% \mathrm{H}_{3} \mathrm{PO}_{4}$ in this solution.
(b) the concentration in $\mathrm{mol} / \mathrm{L}$ of this solution

S9. The solvent, toluene, has a normal boiling point of $110.6^{\circ} \mathrm{C}$ and a boiling point elevation constant of $3.33^{\circ} \mathrm{C} / \mathrm{m}$. When 12.0 grams of an unknown substance, X , is added to 240 grams of toluene, the boiling point is $111.9^{\circ} \mathrm{C}$.
Calculate the Molar Mass of the unknown compound.

Answers to the Supplementary Homework Questions are posted on the course web site. Questions about these Problems will be answered in Recitation

