THE PROPERTIES OF SOLUTIONS

Chapter 13 Outline

Text Problems: #43, 47, 49, 53, 55, 72, 76, 80 + Supplementary Questions (attached)

Text Sample Problems: The text has a number of excellent sample problems (solved in detail) in each section. I would recommend that you study these problems + the "follow up" problems, which have brief solutions at the end of the chapter.

Sect.	Title and Comments	Required?
1.	Types of Solutions: Intermolecular Forces and Solubility	YES
2.	Why Substances Dissolve: Understanding the Solution Process	YES
3.	Solubility as an Equilibrium Process You are NOT responsible for Henry's Law to determine solubilities of gases in liquids. I will mention it only briefly.	YES
4.	Concentration Terms	YES
5.	Colligative Properties of Solutions Skip the subsection on Volatile Non-Electrolyte Solutions	YES

Chapter 13

Supplementary Homework Questions

- S1. The process of dissolving is favored if the _____ interactions are weaker than the interactions.
 - a. solute-solvent; solute-solute and solvent-solvent
 - b. solvent-solvent; solute-solute and solute-solvent
 - c. solute-solute and solvent-solvent; solute-solvent
 - d. solute-solvent and solvent-solvent; solute-solute
 - e. solute-solute; solute-solvent and solvent-solvent
- S2. Two liquids which mix together in all proportions are said to be _____; they mix because _____.
 - a. miscible; their intermolecular interactions are dissimilar
 - b. miscible; their intermolecular interactions are similar
 - c. miscible; their densities are dissimilar
 - d. immiscible; their intermolecular interactions are similar
 - e. immiscible; their intermolecular interactions are dissimilar
- S3. The concentration unit one part per billion (one ppb) is equivalent to one _____ of solute per of solution.
 - a. mg; g
 - b. μg; g
 - c. mg; kg
 - d. $\mu g; kg$
 - e. ng; kg

S4. If 750 mL of a certain solution contains 50.0 g Na₂SO₄, the sodium ion concentration, [Na⁺], is

- a. 0.264 M
- b. 0.315 M
- c. 0.469 M
- d. 0.560 M
- e. 0.939 M

S5. The freezing points of the following aqueous solutions, from highest to lowest, are:

 $0.25 \text{ m glucose}, C_6H_{12}O_6 \qquad 0.15 \text{ m CaCl}_2 \qquad 0.24$

0.20 m NH4NO3

a. $C_{6}H_{12}O_{6} > NH_{4}NO_{3} > CaCl_{2}$ b. $C_{6}H_{12}O_{6} > CaCl_{2} > NH_{4}NO_{3}$ c. $CaCl_{2} > C_{6}H_{12}O_{6} > NH_{4}NO_{3}$ d. $CaCl_{2} > NH_{4}NO_{3} > C_{6}H_{12}O_{6}$ e. $NH_{4}NO_{3} > C_{6}H_{12}O_{6} > CaCl_{2}$

- S6. A sample of the strong electrolyte, potassium phosphate (K₃PO₄, M=212.3) is dissolved in 400 grams of water. The boiling point of the solution is 102.65 °C. How many grams of K₃PO₄ are contained in the mixture?
- S7. The vapor pressure of liquid toluene, C₆H₅CH₃(l) [M=92], is 94.0 torr at 40 °C. When 25.0 grams of an unknown non-volatile compound is dissolved in 184 grams of toluene at 40 °C, the vapor pressure of the mixture is 84.6 torr. Calculate the Molar Mass of the unknown compound, in g/mol.
- S8. An aqueous solution of phosphoric acid, H₃PO₄, contains 285 g H₃PO₄ in 400 mL solution, and has a density of 1.35 g/mL. Calculate
 - (a) the weight % H₃PO₄ in this solution.
 - (b) the concentration in mol/L of this solution
- S9. The solvent, toluene, has a normal boiling point of 110.6 °C and a boiling point elevation constant of 3.33 °C/m. When 12.0 grams of an unknown substance, X, is added to 240 grams of toluene, the boiling point is 111.9 °C. Calculate the Molar Mass of the unknown compound.

Answers to the Supplementary Homework Questions are posted on the course web site. Questions about these Problems will be answered in Recitation