KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline

Text Problems: # 15, 27, 31, 32, 47, 48 (calc. A too), 50(a,b), 52(a,b), 60, 72, 75 + Supplementary Questions (attached)

Text Sample Problems: The text has a number of excellent sample problems (solved in detail) in each section. I would recommend that you study these problems + the "follow up" problems, which have brief solutions at the end of the chapter.

Sect.	Title and Comments	Required ?
1.	Focusing on Reaction Rate	YES
2.	Expressing the Reaction Rate	YES
3.	The Rate Law and its Components	YES
4.	Integrated Rate Laws: Concentration Changes over Time	YES
5.	Theories of Chemical Kinetics	YES
6.	Reaction Mechanisms: The Steps from Reactant to Product	YES
7.	Catalysis: Speeding up a Reaction	YES

Note: We will add a section on **"Spectroscopy in Chemistry"**, in which you'll learn how to apply the Beer-Lambert Law to determine concentrations and rate constants of reactions. This will help you perform the calculations in two laboratory experiments which you will be performing in CHEM 1440.

Note: We will also add an introduction to "Enzyme Kinetics".

Chapter 16

Supplementary Homework Questions

- S1. In a reaction that is second-order with respect to reactant A and second-order with respect to reactant B, the rate of the reaction
 - a. doubles with a doubling of the concentration of either reactant
 - b. doubles with a doubling of the concentration of B
 - c. is quadrupled by a doubling of the concentration of B while the concentration of A is held constant
 - d. is quadrupled by doubling the concentrations of both A and B
 - e. is increased by a factor of 27 by tripling the concentrations of both A and B
- S2. The rate of the chemical reaction involving two substances, A and B, is measured. It is found that if the initial concentration of A used is doubled, keeping the B concentration the same, the rate doubles. If the concentrations of both A and B are doubled, the rate is eight times that measured in the first experiment. The rate law for this reaction is rate =
 - a. k[A][B].
 - b. k[A]²[B].
 - c. k[A][B]².
 - d. 2k[A][B].
 - e. k[A][B]/2.
- S3. A reaction displays zero-order kinetics for its single reactant. It therefore follows that a plot of versus time is linear, and that the slope of this plot =____.
 - a. [reactant]; -k
 - b. [reactant]; k
 - c. 1/[reactant]; -k
 - d. 1/[reactant]; k
 - e. ln[reactant]; -k
- S4. The rate law for a given reaction is rate = $k[reactant]^2$, with $k = 2.64 \times 10^{-4} \text{ M}^{-1} \text{ min}^{-1}$. If the initial concentration is 0.0250 M, what is the initial rate, with the correct units?

Use of the Integrated Rate Law

S5. Consider the second order decomposition of $N_2O(g)$ to $N_2(g) + O_2(g)$, with an initial N_2O concentration of 0.60 M:

 $2 \text{ N}_2 \text{O}(g) \rightarrow 2 \text{ N}_2(g) + \text{O}_2(g)$ Rate = k[N₂O]²

a. When the initial concentration of N_2O is 0.60 M, the half-life is 1420 s. Calculate the rate constant, k, for this reaction (give Units).

b. Calculate the concentration of N_2O 2100 s after the start of the reaction?

c. Calculate the amount of time for the concentration of N_2O to decrease from its initial value (0.60 M) to 0.45 M.

S6. Consider the first order decomposition of SO₂Cl₂(g) to SO₂(g) and Cl₂(g), with an initial concentration of 0.40 M:

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Rate = k[SO_2Cl_2]

a. The half-life for this reaction is 520 min. Calculate the rate constant, k, for this reaction (give Units).

b. Calculate the concentration of SO₂Cl₂ 300 min after the start of the reaction?

c. Calculate the amount of time for the concentration of SO_2Cl_2 to decrease from its initial value (0.40 M) to 0.15 M.

S7. The elimination of ethanol (C_2H_5OH) from the blood stream is accomplished by an enzyme (alcohol dehydrogenase) and is zeroth order with respect to the reactant (C_2H_5OH).

$$C_2H_5OH \xrightarrow{k} C_2H_4O + H_2O$$
 $R = k[C_2H_5OH]^0 = k$

A blood alcohol content of 0.10 % corresponds to a concentration of approximately 20. µM.

a. When the initial ethanol concentration is 20. μ M, the half-life for the reaction is 6.5 hr. Calculate the rate constant for this reaction (give Units).

b. Starting with an initial ethanol concentration of 20. μ M, what is the concentration 3.0 hr after the start of the reaction?

c. Starting with an initial ethanol concentration of 20. μ M how long will it take for the concentration to decrease to 5. μ M?

Reaction Mechanisms

S8. For the reaction, $Hg_2^{2+}(aq) + Tl^{3+}(aq) \rightarrow 2 Hg^{2+}(aq) + Tl^{+}(aq)$, the accepted reaction mechanism is:

 $Hg_{2}^{2+} \xleftarrow{\kappa} Hg + Hg^{2+}$ Fast Pre-Equilibrium $TI^{3+} + Hg \xrightarrow{k_{2}} TI^{+} + Hg^{2+}$ Slow Rate Determining Step

Develop a rate law for Rate = Δ [Tl⁺]/ Δ t, which is consistent with the above mechanism.

Application of the Beer-Lambert Law

S9. The amino acid, Tryptophan (Tryp, M = 204 g/mol) has an intense absorption in the UV spectrum at 290 nm.

(a) A sample of aqueous tryptophan is prepared by dissolving 8.6 mg of the compound in water and diluted to 300 mL. The percent transmission of this sample in a 0.75 cm cell is %T = 25.3%. Calculate the Molar Absorptivity (ϵ) of tryptophan at 290 nm (in M⁻¹ cm⁻¹).

(b) The percent transmission of another tryptophan sample in a 1.5 cm cell is 42.8%. Calculate the concentration of tryptophan in this sample.

(c) Calculate the percent transmission of a 1.5×10^{-4} M aqueous tryptophan sample in a 0.5 cm cell?

S10. Consider a hypothetical Dye molecule which decomposes in basic aqueous solution via second order kinetics (with respect to [Dye]):

$$Dye + OH^- \rightarrow Pr \ oduct \ , \ Rate = -\frac{d[Dye]}{dt} = k[Dye]^2[OH^-] = k'[Dye]^2 \ , \ k' = k[OH^-]$$

The Dye has a visible absorption peak at 540 nm, with Molar Absorptivity: $\varepsilon = 20,000 \text{ M}^{-1} \text{ cm}^{-1}$.

When OH⁻ is added to an aqueous solution of the Dye in a 0.50 cm cell, the following percent transmission data was obtained.

Use the above data to calculate the effective rate constant, k', for this reaction (in M⁻¹ s⁻¹).

Enzyme Catalysis: $V_o = \frac{V_m[S]}{K_M + [S]}$

S11. When a substrate (S) binds strongly to an enzyme (E) to form the complex, ES:

- a. V_m is small
- b. V_m is large
- c. K_M is small
- d. K_M is large
- S12. (a) What is the relation between v_0 and V_m for $[S] = \frac{1}{2}[K_M]$
 - (b) For what ratio, $[S]/K_M$, does one find that $v_o = 0.40V_m$
 - (c) Consider an enzyme catalyzed reaction with $V_m = 150 \ \mu M$, $K_M = 35 \ \mu M$, and $[S] = 50 \ \mu M$, what is the reaction velocity, v_o ?

Answers to the Supplementary Homework Questions are posted on the course web site. Questions about these Problems will be answered in Recitation