THERMODYNAMICS: ENTROPY, FREE ENERGY, AND THE DIRECTION OF CHEMICAL REACTIONS

Chapter 20 Outline

$\begin{aligned} \text { Text Problems: } & \text { \# } 14,16,21,28,40,46,48,51,56,64,74 \\ & + \text { Supplementary Questions (attached) }\end{aligned}$
Text Sample Problems: The text has a number of excellent sample problems (solved in detail) in each section. I would recommend that you study these problems + the "follow up" problems, which have brief solutions at the end of the chapter.

Sect. Title and Comments

1. The Second Law of Thermodynamics: Predicting Spontaneous Change

Required?

YES
In this section and later, the author uses the relatively advanced (and esoteric) concept that an increase in entropy correlates with an increase in the "number of microstates". We will use the more common notion that an increase entropy corresponds to an increase in "disorder"
2. Calculating the Change in Entropy of a Reactrion
In addition to applying the Second Law of Thermodynamics to
predicting entropy, we will show how it can be used to predict the
spontaneity of phase transitions (e.g. melting, vaporization,...)
3. Entropy, Free Energy, and Work

YES
We will also show how λG can predict the spontaneity of phase transitions.

We will not be covering the subsection on "The Free Energy Change" and the Work a System can do"
We will not be covering the subsection on "Coupling of Reactions to Drive a Nonspontaneous Change"
4. Free Energy, Equilibrium, and Reaction Direction YES

Note: I have added short discussions of various applications of $\Delta \mathrm{G}$ in Biological/Biochemical Systems.

Chapter 20

Supplementary Homework Questions

S1. If a reaction is spontaneous at any temperature, then $\Delta \mathrm{H}^{0}$ is \qquad and ΔS° is \qquad .
a. positive; positive
b. positive; negative
c. zero; positive
d. negative; positive
e. negative; negative

S2. At constant T and P, in which of the following situations will the reaction never be spontaneous?
a. $\Delta H>0$ and $\Delta S<0$
b. $\Delta H>0$ and $\Delta S>0$
c. $\Delta H<0$ and $\Delta S<0$
d. $\Delta H<0$ and $\Delta S>0$
e. none of the above

S3. A reaction is exothermic and has a negative value of ΔS^{0}. The value of ΔG^{0} for this reaction is therefore:
a. negative at all temperatures.
b. positive at all temperatures.
c. positive above $0^{\circ} \mathrm{C}$ and negative below $0^{\circ} \mathrm{C}$.
d. positive above a certain temperature and negative below it.
e. negative above a certain temperature and positive below it.

S4. The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is exergonic at $25^{\circ} \mathrm{C}$ and the enthalpy change is +20 kJ . What can be concluded about the entropy change for this reaction?
a. $\Delta S>+67 \mathrm{~J} / \mathrm{K}$
b. $\Delta \mathrm{S}>+800 \mathrm{~J} / \mathrm{K}$
c. $\Delta \mathrm{S}<-67 \mathrm{~J} / \mathrm{K}$
d. No conclusion can be made about $\Delta \mathrm{S}$

S5. For the endergonic reaction $\mathrm{C} \rightarrow \mathrm{D}, \Delta \mathrm{S}=+20 \mathrm{~J} / \mathrm{K}$. For this reaction,
a. $\Delta \mathrm{G}<0 \& \Delta \mathrm{H}<0$
b. $\Delta \mathrm{G}>0 \& \Delta \mathrm{H}<0$
c. $\Delta \mathrm{G}<0 \& \Delta \mathrm{H}>0$
d. $\Delta \mathrm{G}>0 \& \Delta \mathrm{H}>0$

S6. Consider a sample containing 322 grams of toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}, \mathrm{M}=92\right)$.

Quantity	T_{m}	T_{b}	$\lambda \mathrm{H}_{\text {fus }}{ }^{\mathrm{o}}$	$\lambda \mathrm{H}_{\text {vap }}{ }^{\circ}$	$\lambda \mathrm{S}_{\text {fus }}{ }^{\circ}$	$\lambda S_{\text {vap }}{ }^{\circ}$
Value	$-95^{\circ} \mathrm{C}$	$+111^{\circ} \mathrm{C}$	$6.64 \mathrm{~kJ} / \mathrm{mol}$	$38.1 \mathrm{~kJ} / \mathrm{mol}$	$37.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$	$99.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

(a) Calculate $\lambda S_{\text {sys }}, \lambda \mathrm{S}_{\text {surr }}$ and $\lambda S_{\text {univ }}$ for the vaporization of 322 grams of toluene at:
(1) $130{ }^{\circ} \mathrm{C}$, (2) $111{ }^{\circ} \mathrm{C}$, (3) $90^{\circ} \mathrm{C}$
(b) Calculate $\lambda \mathrm{G}^{0}$ for the vaporization of 322 grams of toluene at:
(1) $130{ }^{\circ} \mathrm{C}$, (2) $111{ }^{\circ} \mathrm{C}$, (3) $90^{\circ} \mathrm{C}$
(c) Calculate $\lambda S_{\text {sys }}, \lambda S_{\text {surr }}$ and $\lambda S_{\text {univ }}$ for the freezing (crystallization) of 322 grams of toluene at:
(1) $-115{ }^{\circ} \mathrm{C}$, (2) $-95^{\circ} \mathrm{C}$, (3) $-75^{\circ} \mathrm{C}$
(d) Calculate $\lambda \mathrm{G}^{\mathrm{o}}$ for the freezing (crystallization) of 322 grams of toluene at:
(1) $-115^{\circ} \mathrm{C}$, (2) $-95^{\circ} \mathrm{C}$, (3) $-75^{\circ} \mathrm{C}$

S7. A certain reaction has $\Delta \mathrm{H}^{\circ}=+177.8 \mathrm{~kJ}$, and $\Delta \mathrm{S}^{\circ}=+160.5 \mathrm{~J} / \mathrm{K}$. Above or below what temperature (in ${ }^{\circ} \mathrm{C}$) does it become spontaneous ?

S8. For the reaction shown, $\Delta \mathrm{G}^{\circ}=-32.8 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. Calculate the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$.
b. Is a mixture of the three gases where $\mathrm{pN}_{2}=3.5 \mathrm{bar}, \mathrm{pH}_{2}=1.2 \mathrm{bar}$, and $\mathrm{pNH}_{3}=0.22 \mathrm{bar}$ at equilibrium? Justify your answer.
c. What is the value of $\Delta \mathrm{G}$ under the conditions of part b ?

S9. For the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\mathrm{o}}=+178 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}=+161 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.
a. What is the value of $\Delta \mathrm{G}^{\mathrm{o}}$ at $25^{\circ} \mathrm{C}$?
b. What is the value of $\Delta \mathrm{G}^{\circ}$ at $1500^{\circ} \mathrm{C}$?
c. At what temperature, in ${ }^{\circ} \mathrm{C}$, are the reactants and products in equilibrium? (i.e. $\Delta \mathrm{G}^{\mathrm{o}}=0$)

S10. A hypothetical polypeptide, PP , has two structural forms, $\operatorname{PP}(\alpha)$ and $\operatorname{PP}(\beta)$. For the transition, $\mathrm{PP}(\alpha) \rightarrow \mathrm{PP}(\beta)$, the entropy change is $-120 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and the enthalpy change is $-42 \mathrm{~kJ} / \mathrm{mol}$. This transition is spontaneous \qquad (above or below) \qquad ${ }^{\circ} \mathrm{C}$.

Answers to the Supplementary Homework Questions are posted on the course web site. Questions about these Problems will be answered in Recitation

