Constants and Conversion Factors

$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
1 bar $=100 \mathrm{kPa}=750$ torr
$1 \mathrm{kPa}=7.50$ torr
$1 \mathrm{~J}=1 \mathrm{kPa}-\mathrm{L}$
$1 \mathrm{kcal}=4.18 \mathrm{~kJ}$

Molar Masses
$\mathrm{CH}_{3} \mathrm{OH}-32$

CHEM 3530 - Exam 2 - March 3, 2017

Name

\qquad

PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. From the following thermochemical equations,

$$
\begin{array}{ll}
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+484 \mathrm{~kJ} \\
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+286 \mathrm{~kJ}
\end{array}
$$

$\Delta \mathrm{H}$ for the reaction, $3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g})$, is
(A) -583 kJ
(B) +341 kJ
(C) +583 kJ
(D) -869 kJ
2. The Enthalpy of Formation of trichloromethane $\left(\mathrm{CHCl}_{3}\right)$ is $-103 . \mathrm{kJ} / \mathrm{mol}$. Which of the following equations is/are correct:
(i) $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{C}(\mathrm{gr})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow 2 \mathrm{CHCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-206 \mathrm{~kJ}$
(ii) $2 \mathrm{CHCl}_{3}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{C}(\mathrm{gr}) \quad \Delta \mathrm{H}=+206 \mathrm{~kJ}$
(iii) $(1 / 2) \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{gr})+3 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{CHCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-103 \mathrm{~kJ}$
(A) i only
(B) i \& ii only
(C) ii only
(D) ii \& iii
3. The Entropy change (at $25^{\circ} \mathrm{C}$) for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, is $\Delta \mathrm{S}=-148 . \mathrm{J} / \mathrm{K}$. The Molar Entropy of $\mathrm{NO}_{2}(\mathrm{~g})$ is $\mathrm{S}^{\circ}\left(\mathrm{NO}_{2}\right)=+240$. J/mol-K. Therefore, the Molar Entropy of $\mathrm{NO}(\mathrm{g})$ is:
(A) $+314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $+628 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $-314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) Insufficient information is given to determine the answer
4. The enthalpy change for the combustion of two (2) moles of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, is $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=-1450 \mathrm{~kJ}$. Therefore, the Fuel Value (FV) of methanol is approximately:
(A) $-45 \mathrm{~kJ} / \mathrm{g}$
(B) $+23 \mathrm{~kJ} / \mathrm{g}$
(C) $+45 \mathrm{~kJ} / \mathrm{g}$
(D) $+725 \mathrm{~kJ} / \mathrm{g}$
5. Which of the following processes/reactions are exothermic? (i) combustion, (ii) deposition, (iii) condensation, (iv) fusion
(A) i \& ii \& iii
(B) i \& iii \& iv
(C) ii \& iii
(D) ii \& iii
6. The constant pressure molar heat capacity of $\mathrm{CO}_{2}(\mathrm{~g})$ is $37.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is the approximate value of $\Delta \mathrm{S}$ when 3 moles of $\mathrm{CO}_{2}(\mathrm{~g})$ is heated at constant pressure from $50^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$?
(A) $-51.4 \mathrm{~J} / \mathrm{K}$
(B) $+154.3 \mathrm{~J} / \mathrm{K}$
(C) $+42.5 \mathrm{~J} / \mathrm{K}$
(D) $+51.4 \mathrm{~J} / \mathrm{K}$
7. A sample of 3 . moles of $\mathrm{N}_{2}(\mathrm{~g})$ originally at 500 kPa and 25 L is expanded reversibly and isothermally to a final pressure of $100 \mathrm{kPa} . \Delta \mathrm{S}$ for this process is approximately:
(A) $+6.7 \mathrm{~J} / \mathrm{K}$
(B) $40 . \mathrm{J} / \mathrm{K}$
(C) $-6.7 \mathrm{~J} / \mathrm{K}$
(D) Cannot be determined without the Molar Heat Capacity of $\mathrm{N}_{2}(\mathrm{~g})$
8. When a gas is compressed adiabatically and reversibly, then:
(A) $\mathrm{q}<0 \& \Delta \mathrm{~S}<0$
(B) $\mathrm{q}=0 \& \Delta \mathrm{~S}=0$
(C) $\mathrm{q}<0 \& \Delta \mathrm{~S}>0$
(D) $q>0 \& \Delta S=0$
9. The normal boiling point of methanol is $64^{\circ} \mathrm{C}$. The Enthalpy of Vaporization of methanol is $35.3 \mathrm{~kJ} / \mathrm{jmol}$. What is the entropy change of the system when 1 mole of methanol gas is condensed reversibly to the liquid at $64^{\circ} \mathrm{C}$?
(A) $-550 \mathrm{~J} / \mathrm{K}$
(B) $+550 \mathrm{~J} / \mathrm{K}$
(C) $+105 \mathrm{~J} / \mathrm{K}$
(D) $-105 \mathrm{~J} / \mathrm{K}$
10. The enthalpy of fusion of mercury is $2.3 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the surroundings when 4 (four) moles of mercury liquid are frozen (i.e. crystallized) to the solid at $-39^{\circ} \mathrm{C}$?
(A) $+9.8 \mathrm{~J} / \mathrm{K}$
(B) $+39.3 \mathrm{~J} / \mathrm{K}$
(C) $-9.8 \mathrm{~J} / \mathrm{K}$
(D) $-39.3 \mathrm{~J} / \mathrm{K}$
11. The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is exergonic at $25^{\circ} \mathrm{C}$ and the enthalpy change is +20 kJ . What can be concluded about the entropy change for this reaction?
(A) $\Delta \mathrm{S}>+67 \mathrm{~J} / \mathrm{K}$
(B) $\Delta \mathrm{S}>+800 \mathrm{~J} / \mathrm{K}$
(C) $\Delta \mathrm{S}<-67 \mathrm{~J} / \mathrm{K}$
(D) No conclusion can be made about $\Delta \mathrm{S}$
12. For the endergonic reaction $\mathrm{C} \rightarrow \mathrm{D}, \Delta \mathrm{S}=+20 \mathrm{~J} / \mathrm{K}$. For this reaction,
(A) $\Delta \mathrm{G}<0 \& \Delta \mathrm{H}<0$
(B) $\Delta \mathrm{G}>0 \& \Delta \mathrm{H}<0$
(C) $\Delta \mathrm{G}<0 \& \Delta \mathrm{H}>0$
(D) $\Delta G>0 \& \Delta H>0$
13. The Enthalpy of Vaporization of methanol is $35.3 \mathrm{~kJ} / \mathrm{mol}$. The Entropy of Vaporization of methanol is $105 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is the Gibbs Energy change for the condensation of one mole of methanol gas at $30^{\circ} \mathrm{C}$?
(A) $+3.5 \mathrm{~kJ} / \mathrm{mol}$
(B) $0 \mathrm{~kJ} / \mathrm{mol}$
(C) $-3.5 \mathrm{~kJ} / \mathrm{mol}$
(D) $-32.2 \mathrm{~kJ} / \mathrm{mol}$
14. A hypothetical polypeptide, $P P$, has two structural forms, $P P(\alpha)$ and $P P(\beta)$. For the transition $\mathrm{PP}(\alpha) \rightarrow \mathrm{PP}(\beta)$, the entropy change is $-150 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and the enthalpy change is $-50 \mathrm{~kJ} / \mathrm{mol}$. Over what temperature range is this transition spontaneous?
(A) Below $60^{\circ} \mathrm{C}$
(B) Above $333^{\circ} \mathrm{C}$
(C) Below $333^{\circ} \mathrm{C}$
(D) Above $60^{\circ} \mathrm{C}$
15. As discussed in class, hydrophobic (non-polar) amino acid sidechains tend to reside in the interior of proteins' tertiary structure. The reason they do not reside on the exterior of the protein is that they would
(A) raise the entropy of the surrounding water molecules
(B) lower the entropy of the surrounding water molecules
(C) raise the enthalpy of the surrounding water molecules
(D) hydrogen bond with the surrounding water moleciules
16. $\Delta \mathrm{G}^{0}=-1330 \mathrm{~kJ} / \mathrm{mol}$ for the aerobic metabolism of one mole of pyruvic acid to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. If $\Delta \mathrm{G}^{\circ}=-40 \mathrm{~kJ} / \mathrm{mol}$ for the hydrolysis of one mole of ATP to ADP, and the metabolism results in the conversion of 18 moles of ADP to ATP, then the efficiency of energy storage in aerobic metabolism
(A) 54%
(B) 41%
(C) 28%
(D) 83\%

For \#17 - \#19 consider the phase diagram to the right

17. The slope of curve $A-B$ is negative because
(A) $S_{m}($ liq $)>S_{m}($ sol $)$
(B) $\mathrm{S}_{\mathrm{m}}($ liq $)<\mathrm{S}_{\mathrm{m}}($ sol $)$
(C) $\mathrm{V}_{\mathrm{m}}($ liq $)<\mathrm{V}_{\mathrm{m}}($ sol $)$
(D) $\mathrm{V}_{\mathrm{m}}($ liq $)>\mathrm{V}_{\mathrm{m}}($ sol $)$
18. If the pressure on this substance is decreased from 500 bar to 1 bar, the melting point will \qquad and the boiling point will \qquad .
(A) decrease, increase
(B) increase, decrease
(C) increase, increase
(D) increase/decrease depends on relative solid and liquid entropies, increase
19. At pressures below the triple point pressure, this substance can exist as:
(A) vapor only
(B) solid or liquid or vapor
(C) liquid or vapor only
(D) solid or vapor only

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES (Show work for partial credit)

(12) 1. The normal boiling point of Bromobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$ is 156 C .*
*This is the tempeature at which the vapor pressure is 1. bar (=100 kPa The vapor pressure of Bromobenzene at $40^{\circ} \mathrm{C}$ is 16.7 torr Calculate the Enthalpy of Vaporization of Bromobenzene, in kJ/mol.
(12) 2. The constant pressure molar heat capacity of ethanol gas $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})\right]$ is is 87.2 $\mathrm{J} / \mathrm{mol}-\mathrm{K}$. The molar enthalpy of vaporization of water is $38.6 \mathrm{~kJ} / \mathrm{mol}$ at its normal boiling point, $78{ }^{\circ} \mathrm{C}$ (and 1 bar pressure). Calculate the entropy and enthalpy changes, $\Delta \mathrm{S}$ (in J / K) and $\Delta \mathrm{H}$ (in kJ), when two (2) moles of ethanol gas is cooled at constant pressure (1 bar) from $200^{\circ} \mathrm{C}$ to $78{ }^{\circ} \mathrm{C}$ and then condensed to the liquid; i.e. for the process $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\left(\right.$ gas, $200^{\circ} \mathrm{C}$) $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (liq, $78{ }^{\circ} \mathrm{C}$).

