Constants and Conversion Factors

$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
1 bar $=100 \mathrm{kPa}=750$ torr
$1 \mathrm{kPa}=7.50$ torr
$1 \mathrm{~J}=1 \mathrm{kPa}-\mathrm{L}$

Molar Masses

$\mathrm{C}_{4} \mathrm{H}_{10}-58$.

CHEM 3530 - Exam 2 - March 2, 2018

Name

\qquad

PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. Consider the following Thermochemical equations:

$$
\begin{array}{ll}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-196 \mathrm{~kJ} \\
4 \mathrm{~S}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-1580 \mathrm{~kJ}
\end{array}
$$

Use these equations to determine $\Delta \mathrm{H}$ for the reaction, $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$.
(A) -297 kJ
(B) -493 kJ
(C) -692 kJ
(D) +493 kJ
2. Consider the reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-3122 \mathrm{~kJ}$

Which of the following statements is/are incorrect?
i $\quad \Delta \mathrm{H}$ for forming one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ from and CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ is -1561 kJ
ii $\quad \Delta \mathrm{H}$ for the combustion of 1.5 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ is -4163
iii The enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{6}$ is $+1561 \mathrm{~kJ} / \mathrm{mol}$
iv \quad The enthalpy of formation of $\mathrm{O}_{2}(\mathrm{~g})$ is $0 \mathrm{~kJ} / \mathrm{mol}$
(A) ii \& iv
(B) ii \& iii
(C) ii only
(D) iii only
3. For the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-24 \mathrm{~kJ}$. The Enthalpy of Formations of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-825 \mathrm{~kJ} / \mathrm{mol}$ and $-394 \mathrm{~kJ} / \mathrm{mol}$, respectively. Therefore, the enthalpy of formation of $\mathrm{CO}(\mathrm{g})$ is
(A) $-127 \mathrm{~kJ} / \mathrm{mol}$
(B) $-166.5 \mathrm{~kJ} / \mathrm{mol}$
(C) $-111 \mathrm{~kJ} / \mathrm{mol}$
(D) Cannot be determined without the Enthalpy of Formation of $\mathrm{Fe}(\mathrm{s})$
4. The Fuel Value (aka Specific Enthalpy) of butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, is $50 . \mathrm{kJ} / \mathrm{g}$. Therefore, the enthalpy change to combust $\operatorname{Two(2)}$ of butane in $\mathrm{O}_{2}(\mathrm{~g})$ to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(A) -2900 kJ
(B) -1450 kJ
(C) +2900 kJ
(D) -5800 kJ
5. The entropy change is $+237 \mathrm{~J} / \mathrm{K}$ for the reaction: $2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$. The standard molar entropies of $\mathrm{HgO}(\mathrm{s})$ and $\mathrm{Hg}(\mathrm{I})$ are $70 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and 86 $\mathrm{J} / \mathrm{mol}-\mathrm{K}$. Therefore, the standard molar entropy of $\mathrm{O}_{2}(\mathrm{~g})$ is:
(A) $205 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $221 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $269 \mathrm{~J} / \mathrm{K}$
6. The constant pressure molar heat capacity of $\mathrm{N}_{2}(\mathrm{~g})$ is $29.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is the entropy change when 4 moles of N_{2} are cooled from $200^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ at 1 bar?
(A) -23.2 J/K
(B) $-11.1 \mathrm{~J} / \mathrm{K}$
(C) $-161 \mathrm{~J} / \mathrm{K}$
(D) $-44.4 \mathrm{~J} / \mathrm{K}$
7. A sample of 0.5 moles of $\mathrm{O}_{2}(\mathrm{~g})$ originally at 500 kPa and 5 L is expanded reversibly and isothermally to a final pressure of 100 kPa . What is $\Delta \mathrm{S}$ for this process?
(A) $+13.4 \mathrm{~J} / \mathrm{K}$
(B) $+6.7 \mathrm{~J} / \mathrm{K}$
(C) $-6.7 \mathrm{~J} / \mathrm{K}$
(D) $+4030 \mathrm{~J} / \mathrm{K}$
8. When a gas is expanded adiabatically and reversibly, then:
(A) $\Delta \mathrm{H}>0 \& \Delta \mathrm{~S}<0$
(B) $\Delta \mathrm{H}<0 \& \Delta \mathrm{~S}=0$
(C) $\Delta \mathrm{H}<0 \& \Delta \mathrm{~S}>0$
(D) $\Delta \mathrm{H}>0 \& \Delta \mathrm{~S}=0$
9. The normal melting point of toluene is $-95^{\circ} \mathrm{C}$. The enthalpy of fusion of toluene is $6.6 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the system when one mole of liquid toluene crystallizes to solid toluene at $-95^{\circ} \mathrm{C}$?
(A) $+69 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $+37 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $-37 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $-69 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
10. The normal boiling point of toluene is $111^{\circ} \mathrm{C}$. The enthalpy of vaporization of toluene is $39.2 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the surroundings when one mole of toluene vaporizes at $111^{\circ} \mathrm{C}$?
(A) -102 J/mol-K
(B) $+35.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) +102 J/mol-K
(D) $-353 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
11. The reaction, $A \rightarrow B$, is endergonic at $25^{\circ} \mathrm{C}$ and the entropy change is $+40 \mathrm{~J} / \mathrm{K}$. What can be concluded about the enthalpy change for this reaction?
(A) $\Delta \mathrm{H}<-11.9 \mathrm{~kJ}$
(B) $\Delta \mathrm{H}>+11.9 \mathrm{~kJ}$
(C) $\Delta \mathrm{H}>18.4 \mathrm{~kJ}$
(D) No conclusion can be made about $\Delta \mathrm{H}$
12. For the exergonic reaction, $\mathrm{C} \rightarrow \mathrm{D}, \Delta \mathrm{H}=+25 \mathrm{~kJ}$. For this reaction,
(A) $\Delta \mathrm{G}<0 \& \Delta \mathrm{~S}<0$
(B) $\Delta G>0 \& \Delta S>0$
(C) $\Delta \mathrm{G}>0 \& \Delta \mathrm{~S}<0$
(D) $\Delta \mathrm{G}<0 \& \Delta \mathrm{~S}>0$
13. The Enthalpy of Fusion of acetone is $5.7 \mathrm{~kJ} / \mathrm{mol}$. The Entropy of Fusion of Acetone is $32.0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is $\Delta \mathrm{G}$ when 1 mole of liquid acetone is crystallized to the solid at $20^{\circ} \mathrm{C}$?
(A) +3.7 kJ
(B) 0 kJ
(C) -3.7 kJ
(D) -15.1 kJ
14. The enthalpy and entropy changes for the denaturation of one mole of a protein, Native \rightarrow Random Coil, are $+280 \mathrm{~kJ} / \mathrm{mol}$ and $+800 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$, respectively. Over what temperature range, in degrees Celsius, is this transition spontaneous?
(A) Below $77^{\circ} \mathrm{C}$
(B) Below $350{ }^{\circ} \mathrm{C}$
(C) Above $77^{\circ} \mathrm{C}$
(D) Above $350^{\circ} \mathrm{C}$
15. The pairing of bases in the formation of doubly stranded DNA is
(A) Favored by both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$
(B) Favored by $\Delta \mathrm{H}$, but not by $\Delta \mathrm{S}$
(C) Favored by $\Delta \mathrm{S}$, but not by $\Delta \mathrm{H}$
(D) Not favored by either $\Delta \mathrm{H}$ or $\Delta \mathrm{S}$
16. Spooky McSchwartz (aka "The Spookman") recently developed a new, high efficiency, cycle for the metabolism of Swanson Chunk Tuna. In the MM cycle, $\Delta \mathrm{G}^{\circ}$ for the metabolism of one mole of Tuna is -1100 kJ and the cycle converts 25 moles of ADP to ATP. If $\Delta G^{\circ}=30 \mathrm{~kJ}$ for the conversion of one mole of ADP to ATP, then the energy storage efficiency of Spooky's cycle is:
(A) 83%
(B) 41%
(C) 28%
(D) 68\%

For \#17-\#19, consider the phase diagram to the right

17. At temperatures below the triple point temperature, this substance can exist as:
(A) vapor only
(B) solid or liquid or vapor
(C) liquid or vapor only
(D) solid or vapor only
18. The slope of curve $A-D$ is steeper than the slope of curve $A-C$ because
(A) $\Delta_{\text {sub }} S>\Delta_{\text {vap }} S$
(B) $\Delta_{\mathrm{vap}} \mathrm{S}>\Delta_{\text {sub }} \mathrm{S}$
(C) $\Delta_{\text {sub }} V>\Delta_{\mathrm{vap}} \mathrm{V}$
(D) $\Delta_{\text {sub }} V<\Delta_{\text {vap }} V$
19. If the pressure on this substance is increased from 1 bar to 500 bar, the melting point will \qquad and the boiling point will \qquad .
(A) decrease, increase (B) increase, increase (C) increase, decrease
(D) increase/decrease depends on relative solid and liquid entropies, increase

PART II. TWO (2) PROBLEMS ON FOLLOWING PAGES (Show work for partial credit)

(10) 1. The normal boiling point of liquid pyridine is $116^{\circ} \mathrm{C}^{\star}$, and the Enthalpy of Vaporization of pyridine is $40.3 \mathrm{~kJ} / \mathrm{mol}$.
Calculate the temperature, in ${ }^{\circ} \mathbf{C}$, at which the vapor pressure of pyridine is 20 kPa .
*This is the temperature at which the vapor pressure of the liquid is 1.0 bar
(14) 2. The constant pressure molar heat capacity of benzene liquid $\left[\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{liq})\right]$ is $135 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. The melting point of benzene is $6^{\circ} \mathrm{C}$. The Enthalpy of Fusion of benzene is $9.8 \mathrm{~kJ} / \mathrm{mol}$. Consider the process in which three (3) moles of liquid benzene are (1) cooled from $70^{\circ} \mathrm{C}$ to the melting point, and (2) is crystallized to the solid:
This two step process results in the transformation:
$\mathrm{C}_{6} \mathrm{H}_{6}\left(\right.$ liq, $\left.70^{\circ} \mathrm{C}\right) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}\left(\right.$ sol, $\left.6^{\circ} \mathrm{C}\right)$.
For this process, calculate:
(9) (a) $\Delta \mathrm{S}$ (in $\mathrm{J} / \mathrm{K})$
(5) (b) $\Delta \mathrm{H}($ in kJ$)$

