CHEM 3530-Exam 3 - March 31, 2017

Constants and Conversion Factors

$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
1 bar $=100 \mathrm{kPa}=750$ torr
$1 \mathrm{kPa}=7.50 \mathrm{torr}$
$1 \mathrm{~J}=1 \mathrm{kPa}-\mathrm{L}$
$1 \mathrm{kcal}=4.18 \mathrm{~kJ}$

Molar Masses	$\mathrm{CH}_{3} \mathrm{OH}-32$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-180$	$\mathrm{H}_{2} \mathrm{O}-18$
	$\mathrm{C}_{10} \mathrm{H}_{8}-128$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}-164$	

Quadratic Equation: If $a x^{2}+\mathrm{bx}+\mathrm{c}=0$, then $\quad x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

CHEM 3530 - Exam 3 - March 31, 2017

Name

\qquad

(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

1. When 16 grams of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is added to 108 grams of water, the density of the solution is $0.90 \mathrm{~g} / \mathrm{mL}$. The Molarity of methanol in this solution is approximately:
(A) 3.6 M
(B) 4.2 M
(C) 4.5 M
(D) 4.6 M
2. What is the mole fraction of Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{12}$, in a 4.50 molal solution of Glucose in water, $\mathrm{H}_{2} \mathrm{O}$?
(A) 0.081
(B) 0.045
(C) 0.93
(D) 0.075
3. The vapor pressure of water $(\mathrm{M}=18)$ at $60^{\circ} \mathrm{C}$ is 150.0 torr. When 135 grams of glucose ($\mathrm{M}=180$) is dissolved in 108 grams of water $(\mathrm{M}=18)$, the vapor pressure of the solution at $40^{\circ} \mathrm{C}$ is approximately:
(A) 83 torr
(B) 169 torr
(C) 133 torr
(D) 17 torr
4. The freezing point of pure CCl_{4} is $\mathrm{Tf}^{\circ}=-23^{\circ} \mathrm{C}$. When 25 grams of napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, are placed in 600 grams of $\mathrm{CCl}_{4}\left(\mathrm{~K}_{\mathrm{f}}=30^{\circ} \mathrm{C} / \mathrm{m}\right.$, $)$, the freezing point of the solution is approximately:
(A) $-9.8^{\circ} \mathrm{C}$
(B) $-32.8^{\circ} \mathrm{C}$
(C) $-13.2^{\circ} \mathrm{C}$
(D) $-24.6^{\circ} \mathrm{C}$
5. When 25. grams of an unknown compound is dissolved in 500. g of water $\left(\mathrm{K}_{\mathrm{f}}=1.9^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-1.10^{\circ} \mathrm{C}$. The Molar Mass of the compound is approximately
(A) $58 \mathrm{~g} / \mathrm{mol}$
(B) $105 \mathrm{~g} / \mathrm{mol}$
(C) $86 \mathrm{~g} / \mathrm{mol}$
(D) $29 \mathrm{~g} / \mathrm{mol}$
6. When 41 grams of the strong electrolyte, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{M}=164)$ is dissolved in 250 grams of water ($\mathrm{K}_{\mathrm{f}}=1.9^{\circ} \mathrm{C} / \mathrm{m}$), the freezing point of the solution is
(A) $-5.7^{\circ} \mathrm{C}$
(B) $-17.1^{\circ} \mathrm{C}$
(C) $-1.9^{\circ} \mathrm{C}$
(D) $+17.1^{\circ} \mathrm{C}$
7. What is the osmotic pressure, in bar, of a solution prepared by dissolving 20 grams of Glucose ($\mathrm{M}=180$) in 500 mL of aqueous solution at $50^{\circ} \mathrm{C}$?
(A) 92 bar
(B) 600 bar
(C) 3.0 bar
(D) 6.0 bar
8. When a solution of an unknown compound is prepared by putting 10 grams of an unknown compound into 500 mL of solution, the osmotic pressure of the solution is 1.0 bar at $25^{\circ} \mathrm{C}$. The Molar Mass of the unknown compound is approximately
(A) $50,000 \mathrm{~g} / \mathrm{mol}$
(B) $500 \mathrm{~g} / \mathrm{mol}$
(C) $250 \mathrm{~g} / \mathrm{mol}$
(D) $5,000 \mathrm{~g} / \mathrm{mol}$
9. A 0.5 M solution of the dissociated sodium salt of a polymer, $\mathrm{Na}^{+} \mathrm{P}^{-}$, is placed in the left compartment, 0.3 M NaCl is placed in the right compartment, and the compartments are in contact through a semipermeable membrane, which permits diffusion of Na^{+}and Cl^{-}, but not P^{-}. In order to reach equilibrium.
(A) Na^{+}will move from left to right and Cl^{-}will move from right to left.
(B) Na^{+}will move from right to left and Cl^{-}will move from left to right.
(C) Both Na^{+}and Cl^{-}will move from left to right.
(D) Both Na^{+}and Cl^{-}will move from right to left.

For \#10-\#13: Consider the equilibrium, $2 \mathrm{POCl}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. The enthalpy change for this reaction is +510 kJ . The value of the equilibrium constant at $100^{\circ} \mathrm{C}$ is 25.
10. For the above reaction, if the volume of the container is increased, then
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the right and K will remain constant
(D) the equilibrium will move to the left and K will remain constant
11. For the above reaction, if the temperature is decreased, then
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
12. What is the Standard Gibbs Energy Change, $\Delta \mathrm{G}^{0}$ (in kJ), for the above reaction at $100^{\circ} \mathrm{C}$?
(A) -4.3 kJ
(B) -80 kJ
(C) +4.3 kJ
(D) -10.0 kJ
13. For the related reaction, $\mathrm{POCl}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+(1 / 2) \mathrm{Cl}_{2}(\mathrm{~g})$, the equilibrium constant is
(A) 625
(B) 12.5
(C) 5
(D) 0.20
14. The gas phase molecule, A , dissociates according to the equilibrium, $\mathrm{A}(\mathrm{g}) \leftrightarrow \mathrm{B}(\mathrm{g})+2 \mathrm{C}(\mathrm{g})$. The equilibrium constant is 1×10^{-3}. If one puts an initial pressure of 3 bar of A into a flask, what is the pressure of C at equilibrium? [NOTE: You may assume that very little A dissociates]
(A) 0.03 bar
(B) 0.18 bar
(C) 0.14 bar
(D) 0.09 bar

For \#15-\#16: We learned in class that the average number of ligands bound to a protein, R, is related to the ligand concentration, L, by:
$R=\frac{n[L]}{K+[L]}$ where n is the maximum number of bound ligands and
K is the dissociaton constant
A series of equilibrium dialysis experiments yielded a double reciprocal plot (1/R vs. $1 /[\mathrm{L}]$) with a slope of 0.005 and an intercept of 0.015 .
15. The maximum number of bound ligands, n, is:
(A) 3
(B) 67
(C) 84
(D) 200
16. The dissociation constant, K , is:
(A) 7.5×10^{-5}
(B) 3.0
(C) 67
(D) 0.33
17. A hypothetical biochemical reaction is written as: $\mathrm{A}(\mathrm{aq}))=\mathrm{B}(\mathrm{eq})+2 \mathrm{H}^{+}(\mathrm{aq})$. The Gibbs energy difference using the Physical Chemists' Standard State is $\Delta \mathrm{G}^{0}=+25 \mathrm{~kJ}$. What is the Gibbs energy difference, $\Delta \mathrm{G}^{0}$, for this reaction using the Biochemists' (or Biological) Standard State?
(A) +105 kJ
(B) +65 kJ
(C) -15 kJ
(D) -55 kJ
18. In the first step in the glycolysis cycle, a phosphate group is added to glucose (GLU) to give (G6P). The net reaction for this step is:
$\mathrm{GLU}+\mathrm{P}_{\mathrm{i}}+\mathrm{ATP} \rightarrow \mathrm{G} 6 \mathrm{P}+\mathrm{ADP} \quad \Delta \mathrm{G}^{\mathrm{o}}=-16.7 \mathrm{~kJ}$
This is an example of a step driven by:
(A) Coupled Reactions
(B) Tandem Reactions
(C) Physiological Concentrations
(D) Biological Standard State driven reaction
19. Which of the following statements is/are true concerning the binding of O_{2} to Myoglobin (Mb) and Hemoglobin (Hb)?
(i) Hb molecules consist of a hexamer of six Mb-like molecules
(ii) In muscle tissue after exercise (in which the O_{2} has dropped to 20 torr), Mb retains most of its bound O_{2}, but Hb has depleted its O_{2} reserve
(iii) The curve of O_{2} saturation vs. P_{o} in Hb is sigmoidal because the first bound O_{2} makes it easier for additional O_{2} molecules to bind to Hb
(A) i and ii
(B) i and iii
(C) ii and iii
(D) iii only

PART II. TWO (2) PROBLEMS FOLLOW (Show work for partial credit)

(12) 1. Consider the solution phase reaction, $A(a q) \leftrightarrow B(a q)+C(a q)$. At $50^{\circ} C$, the equilibrium is $\mathrm{K}_{\mathrm{c}}=2.0$.
(8) (a) If one prepares a solution with $[A]_{0}=1.0 \mathrm{M}$, what are the concentrations of A, B, and C after the reaction has reached equilibrium?
Notes: You CANNOT assume that only a small fraction of A has reacted. The quadratic equation is given on the cover sheet.
(4) (b) What is the Gibbs Energy change (in kJ) at $50^{\circ} \mathrm{C}$ for the above reaction when the concentrations are $[\mathrm{A}]=0.2 \mathrm{M},[\mathrm{B}]=[\mathrm{C}]=0.8 \mathrm{M}$?
(12) 2. For the reaction, $A(g) \leftrightarrow B(g)$, the Standard Enthalpy Change is $\Delta H^{\circ}=-70 . \mathrm{kJ} / \mathrm{mol}$ and the equlibrium constant is $\mathrm{K}=5.0 \times 10^{4}$ at $100^{\circ} \mathrm{C}$.
(6) (a) Calculate the Standard Entropy Change, $\Delta \mathrm{S}^{\circ}$, for this reaction.
(6) (b) Calculate the value of the equilibrium constant at $150^{\circ} \mathrm{C}$.

