CHEM 3530 - Exam 3 - March 30, 2018

Constants and Conversion Factors

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$R = 8.31 \text{ J/mol-K} = 8.31 \text{ kPa-L/mol-K}$$

$$1 \text{ bar} = 100 \text{ kPa} = 750 \text{ torr}$$

$$1 \text{ kPa} = 7.50 \text{ torr}$$

$$1 J = 1 kPa-L$$

$$1 \text{ kcal} = 4.18 \text{ kJ}$$

Molar Masses:

Given in the individual questions on this test.

Quadratic Equation: If
$$ax^2+bx+c=0$$
, then $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$

NOT needed on this year's test

CHEM 3530 - Exam 3 - March 31, 2017

(76) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)

	For #1 - #2: When density of the solution	•	se [M=180] is adde	ed to 120 grams of water [M=18], the				
1.	The Molarity of the above solution is approximately							
	(A) 1.5 Molar (I	B) 1.9 Molas	(C) 2.6 Molar	(D) 2.1 Molar				
2.	The molality of the above solution is approximately							
	(A) 1.5 molal (F	3) 1.9 molal	(C) 2.6 molal	D) 2.1 molal				
3.	How many grams of sucrose [M=342] are required to prepare 2.5 L of a 0.40 Molar sucrose solution?							
	(A) 342 grams	(B) 171 grams	(C) 137 grams	(D) 55 grams				
4.	The vapor pressure of a solution containing 90 grams of water [M=18] and 144 grams of glucose [M=180] is 79. torr at 50 °C. What is the approximate vapor pressure of pure wate at 50 °C?							
	(A) 211 torr	(B) 68 torr	(C) 92 torr	(D) 30 torr				
5.	The freezing point of pure CCl ₄ is T_f^o = -23.0 °C. When a sample of of napthalene, $C_{10}H_8$ [M=128], is dissolved in 750 grams of CCl ₄ (K_f = 30 °C/m,), the freezing point of solution is -37.0 °C. Approximately how many grams of napthalene were dissolved?							
	(A) 60 g	(B) 92 g	(C) 80 g	(D) 45 g				
6.	The normal boiling point of pure benzene is 80.1 °C When 50 grams of an unknown compound is dissolved in 700 grams of benzene ($K_b = 2.1$ °C/m), the boiling point of the solution is 81.8 °C. The Molar Mass of the compound is approximately							
	(A) 93 g/mol	(B) 88 g/mol	(C) 43 g/mol	(D) 62 g/mol				

7. When 41 grams of the strong electrolyte, Na₃PO₄ [M=164], is dissolved in 150 grams of water $(K_b = 0.5 \, {}^{\circ}\text{C/m})$, the boiling point of the solution is

(A) 103.3 °C (B) 96.7 °C (C) 100.8 °C (D) 102.5 °C

The osmotic pressure of an aqueous solution of sucrose (C₁₂H₂₂O₁₁) is 6.40 bar at 30 °C. How many moles of sucrose are contained in 250 mL of this solution?

(A) 3.8×10^{-3} mol (B) 0.25 mol (D) 6.4×10^{-4} mol (C) 0.064 mol

	nL of aqueous solu	ution, the osmotic p	putting 15. grams of an uressure of the solution is roximately	
(A) 520 g/mol	(B) 990 g/mol	(C) 740 g/mol	(D) 100,000 g/mol	
For #10 - #13: Conside $2 \text{ NO}_2(g) + \frac{1}{2} \text{ O}_2(g) \rightleftharpoons$ equilibrium constant is	$N_2O_5(g)$. The ent	· · · · · · · · · · · · · · · · · · ·	is reaction is -170 kJ and	1 the
10. For the above reaction	n, if N ₂ (g) is adde	d at a constant total	pressure of 5 bar,	
(A) the equilibrium	will move to the le	eft and K will decre	ase	
(B) the equilibrium	will move to the ri	ght and K will incre	ease	
(C) the equilibrium		•		
(D) the equilibrium				
(D) the equilibrium	will move to the H	gitt and ix will tem	ani constant	
11. For the above reaction	n, if the temperatu	re is increased,		
(A) the equilibrium	will move to the le	off and K will decre	200	
(B) the equilibrium				
(C) the equilibrium				
(D) the equilibrium	will move to the ri	ght and K will remain	ain constant	
12. The standard state Gapproximately:	ibbs energy chang	e, $\Delta_r G^0$, for the above	ve reaction at 150 °C is	
(A) -3.2 kJ (B) -1.4 kJ	(C) -3200 kJ	(D) $+1.4 \text{ kJ}$	
13. What is K for the rea	ction, 2 N ₂ O ₅ (g) =	$\Rightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$	at 150 °C ?	
(A) 6.25	B) 0.20	(C) 0.16	(D) 0.63	
14. For the gas phase eq If one puts A and B pressure of C at equi	into a vessel with	$B(g) \rightleftharpoons 2C(g)$, the initial pressures, P_{ir}	equilibrium constant is l $_{iit}(A) = P_{init}(B) = 3$. bar, v	$\zeta = 1 \times 10^{-3}$. what is the
NOTE: You may a	ssume that very lit	tle A and B react.		
(A) 0.045 bar	(B) 0.164 bar	(C) 0.082 bar	(D) 0.063 bar	

(06) 1. As an introduction to Parts (a) and (b) below: If one has an equilibrium: $A \rightleftharpoons B + C$, if $P^{o}(A) = P^{o}(B) = 3.0$ bar, $P^{o}(C) = 0.0$ bar and K = 10.0, one would set up the expression to solve this equilibrium as: $10.0 = \frac{(3.0 + x)(x)}{3.0 - x}$

Set up the equivalent expressions for the following two equilibria. Your answer should have the numbers 10.0, 3.0 and the variable "x" (as above). As in the example above, $P^{o}(A) = P^{o}(B) = 3.0$ bar, $P^{o}(C) = 0.0$ bar and K = 10.

(03) (a)
$$2A = B + 3C$$
 $k = \frac{P_B}{B} = \frac{A^3}{C^3} = \frac{(3+x)(3x)}{(3-2x)^2}$

(03) (b)
$$A + 3B \neq C$$

$$3 - 3 \times X$$

$$3 - 3 \times X$$

$$X = \frac{P_c}{P_A P_B^3} > \frac{X}{(3 - X)[3 - 3X]}$$

(06) 2. For an equilibrium reaction, $A \rightleftharpoons B$, the slope and intercept of the van't Hoff plot $[ln(K) \text{ vs } 1/T[\text{ are: } Slope = +4850 \text{ K}, Intercept = 7.60.}]$

Calculate the values of ΔH^0 (in kJ/mol) and ΔS^0 (in J/mol-K) for this reaction.

For an equilibrium reaction, $A \rightleftharpoons B + 2C$, the the Gibbs Energy is $\Delta G = +8.70 \text{ kJ/mol}$ (06) 3. at 25 °C when the pressures of A, B, and C are: P(A) = 0.50 bar, P(B) = P(C) = 1.50 bar

For an equilibrium reaction, $C \rightleftharpoons D$, The equilibrium constant is K = 50. at T = 100 °C and (06) 4. K = 2.5 at T = 150 °C. Calculate the value of the enthalpy change for the reaction,

For an equinorium reaction,
$$C = D$$
, The equinorium constant is $K = 50$, at $I = 100^{\circ}$ K = 2.5 at $T = 150^{\circ}$ C. Calculate the value of the enthalpy change for the reaction, ΔH° (in kJ/mol).

 $R_{1} = 373 \text{ k}$
 $R_{2} = 373 \text{ k}$
 $R_{3} = 373 \text{ k}$