CHEM 3530 - Exam 4 – April 21, 2017

Name_____

(76) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1 - #4: Consider.the base, aniline (Anil), which has a base equilibrium constant, $K_b = 4.3 \times 10^{-10}$.

- What is the pH of a 0.05 Molar aqueous solution of aniline (Anil)?
 (A) 3.0
 (B) 5.3
 (C) 8.7
 (D) 11.0
- 2. What is the pH of a 0.05 Molar aqueous solution of anilinium chloride (AnilHCI)?
 - (A) 3.0 (B) 5.3 (C) 8.7 (D) 11.0
- 3. What is the pH after 0.3 moles of HCl is added to 3 Liters of 0.40 Molar aqeuous aniline?
 - (A) 4.1 (B) 9.8 (C) 8.9 (D) 5.1
- 4. What is the ratio, $[AniH^+]/[AniI]$ at pH = 4.2 (AniH⁺ is the conjugate acid]?

(A) 2.7 (B) 0.74 (C) 0.37 (D) 8.6

The two side groups ionize according to:

-Ring-NH⁺ \rightarrow H⁺ + -Ring-N and -(CH₂)₄NH₃⁺ \rightarrow H⁺ + -(CH₂)₄NH₂

The four pK_a's are: pK_a' (α -CO₂H) = 2.2, pK_a''(Ring-NH⁺) = 6.0, pK_a'''(α -NH₃⁺) = 9.8, and pK_a''''(ϵ -NH₃⁺) = 10.6

- 5. What is the pH after 1.5 equivalents of NaOH are added to a solution containing the most acidic form of Pep?
 - (A) 2.2 (B) 4.1 (C) 6.0 (D) 7.9

- 6. What is the pH after 250 mL of 1.6 M NaOH are added to 200 mL of 0.80 M Pep in the most acidic form?
 - (A) 4.1 (B) 6.0 (C) 7.9 (D) 9.8
- 7. What pH corresponds to the isoelectric point, pI, of Pep?
 - (A) 7.9 (B) 9.8 (C) 10.2 (D) 10.6
- 8. What is the average charge of Pep at pH = 7.9?

(A) +1.0 (B) +0.5 (C) -0.5 (D) -1.0

9. What species are present in a Pep solution buffered to pH = 5.0?

(A) Pep^{3+} & Pep^{2+} (B) Pep^{2+} & Pep^{1+} (C) Pep^{1+} and Pep^{0-} (D) Pep^{0-} and Pep^{1-}

- Three proteins, A, B, and C, have the same Molar Mass and size, but different isoelectric points, pl(A)= 4.5, pl(B)= 7.5, pl(C)= 10.0. If they if they are put onto an electrophoresis column buffered at pH=6.0, then
 - (A) A, B and C will migrate towards the positive electrode
 - (B) A, B and C will migrate towards the negative electrode
 - (C) A will migrate towards the negative electrode, B and C towards the positive electrode
 - (D) A will migrate towards the positive electrode, B and C towards the negative electrode
- 11. In class, we discussed the buffering action of the CO₂/HCO₃⁻ and Hemoglobin (Hb) buffers in controlling the pH in blood? Which of the following statements is/are true?
 - (i) Because the principal metabolism products are carboxylic acids, the large excess of HCO₃⁻ relative to CO₂ makes this a suitable buffer to remove the added acid.
 - (ii) CO₂ produced in the muscles lowers the pH of the blood, which is then raised by the Hb buffer.
 - (iii) The Hb molecules in muscles become more saturated with O₂ at lower pH's
 - (A) i only (B) i and ii (C) i and ii and iii (D) ii and iv

For #12 - #13: consider the slightly soluble compound, Ag_2CO_3 , which dissociates which dissolves in water according to the equation, $Ag_2CO_3(s) = 2Ag^+(aq)+CO_3^-(aq)$. The solubility product (aka solubility constant) is $K_s = 6.2x10^{-12}$.

12. What is the solubility of Ag₂CO₃ in pure water?

(A) 1.2×10^{-4} M (B) 1.8×10^{-4} M (C) 1.2×10^{-6} M (D) 2.5×10^{-6} M

- 13. What is the concentration of silver ions, [Ag⁺], in a solution containing Ag₂CO₃ and 0.1 M K₂CO₃(aq)?
 - (A) 1.6×10^{-5} M (B) 7.9×10^{-6} M (C) 3.9×10^{-6} M (D) 2.5×10^{-6} M
- 14. The reaction, $A \rightarrow P$, is of order "x". A plot of $1/[A]^3$ vs. t is a straight line. The order of the reaction, x, is
 - (A) -2 (B) 3 (C) 2 (D) 4

For #15 - #16: Consider a reaction, $A \rightarrow$ Products, which is of order "n"; i.e. Rate = $k[A]^n$. For this reaction, the following initial rate data was obtained.

When $[A]_o = 0.15$ M, the initial rate is 6.80 M/min

When $[A]_o = 0.60$ M, the initial rate is 1.70 M/min

- 15. The order of this reaction (i.e. "n") is:
 - (A) -2 (B) -1 (C) +1 (D) +2
- 16. The rate constant for this reaction (i.e. "k") is approximately:
 - (A) $6.3 \text{ M}^2 \text{ min}^{-1}$ (B) $0.15 \text{ M}^3 \text{ min}^{-1}$ (C) $1.0 \text{ M}^2 \text{ min}^{-1}$ (D) 45 min^{-1}
- 17.Consider the reaction, $A \rightarrow P$, which is **second** order; i.e. $r = k[A]^2$. The rate constant for this reaction is 0.02 M⁻¹s⁻¹. When $[A]_0 = 0.80$ M, then 100 s after the start of the reaction, the concentration, [A], will be approximately
 - (A) 0.31 M (B) 0.14 M (C) 0.42 M (D) 0.11 M
- 18. Thallium-201 is a radioisotope which is used for myocardial imaging tests. Its half-life is 73 hours (which corresponds to a rate constant of 9.5x10⁻³ hrs⁻¹). Approximately how long will it take for the amount of Thallium-201 in the body to be reduced to 10% of its initial amount upon injection?
 - (A) 190 hrs. (B) 240 hrs. (C) 270 hrs. (D) 290 hrs.
- 19. The half-life for the nuclear transformation of ⁴⁰K to ⁴⁰Ar is 1.25 billion years. If a rock was formed 3.2 billion years ago, then the ratio of the two elements, [⁴⁰Ar]/[⁴⁰K], is approximately:

(A) 0.2 (B) 2.7 (C) 4.9 (D) 8.6

PART II. TWO (2) PROBLEMS FOLLOW (Show work for partial credit)

(12) 1. Leucine (Leu) is an amino acid with R= -CH₂CH(CH₃)₂. Its pK_a's are: $pK_a'(\alpha$ -CO₂H)= 2.3 and $pK_a''(\alpha$ -NH₃⁺)= 9.7.

If one prepares a 0.8 Molar solution neutral leucine and raises the pH to 10.3, what are the concentrations, [Leu] and [Leu⁻¹], in the resulting solution?

(12) 2. Consider the reaction, $A \rightarrow$ Products, which is of order 3/2; i.e. Rate = k[A]^{3/2}. The integrated rate equation for a 3/2 order reaction is:

$$\frac{1}{[A]^{1/2}} - \frac{1}{[A_0]^{1/2}} = \frac{1}{2}kt$$

For a given 3/2 order reaction, the initial concentration, $[A]_0$, is 0.60 M, and the rate constant, k, is 0.010 M^{-1/2} s⁻¹.

(6) (a) How long from the start of the reaction would it take for the concentraton of A to decrease from 0.60 M to 0.40 M ?

(6) (b) What will be the concentration, [A], 120 seconds after the start of the reaction ?