CHEM 3530 - Exam 4 – April 20, 2018

Name_____

(68) **PART I. MULTIPLE CHOICE (Circle the ONE correct answer)**

For #1 - #4: Consider hypobromous acid (HBrO), which has an acid dissociation constant, $K_a = 2.0 \times 10^{-9}$.

- 1. What is the pH of a 0.20 M solution of aqueous hypobromous acid (HBrO)?
 - (A) 3.0 (B) 4.7 (C) 9.3 (D) 11.0
- 2. What is the pH of a 0.20 M solution of aqueous potassium bromite (KBrO)?
 - (A) 3.0 (B) 4.7 (C) 9.3 (D) 11.0
- 3. What is the pH of a solution after 0.50 L of 0.40 M HCl are added to a 2 L solution of a 0.40 M solution of potassium bromite?
 - (A) 8.2 (B) 4.8 (C) 9.2 (D) 5.8
- 4. What is the value of the ratio, $[HBrO]/[BrO^-]$ at pH = 9.1:
 - (A) 0.40 (B) 0.67 (C) 1.50 (D) 2.50

For #5 - #9, consider the dipeptide (Pep) consisting of an Aspartic Acid residue and a Lysine residue (pictured on right) Note: The most positive, low pH, form of this dispeptide has a charge = +2 H_2N H_2N $H_$

The two side groups ionize according to:

 $-CH_2CO_2H _ H^+ + -CH_2CO_2^-$ and $-(CH_2)_4NH_3^+ _ H^+ + -(CH_2)_4NH_2$

The four pK_a's are: pK_a' (α -CO₂H) = 2.1, pK_a''(β -CO₂H) = 3.9, pK_a'''(α -NH₃⁺) = 9.9, and pK_a''''(ϵ -NH₃⁺) = 10.5

- 5. What is the pH after 3.5 equivalents of NaOH are added to the most acidic form of pep?
 - (A) 6.9 (B) 9.9 (C) 10.2 (D) 10.5
- 6. How many equivalents of NaOH must be added to the most acidic form of Pep to reach the isoelectric point, pl?
 - (A) 1.0 (B) 2.0 (C) 3.0 (D) 3.5

- 7. What is the pH after 100 mL of 1.5 M NaOH are added to 200 mL of 0.30 M Pep in the most acidic form?
 - (A) 3.0 (B) 3.9 (C) 6.9 (D) 9.9
- 8. What is the average charge of Pep at pH = 9.9?

(A) -1.5 (B) -1.0 (C) -0.5 (D) -2.0

- 9. What species has the highest concentration at pH = 8.5?
 - (A) pep⁺¹ (B) pep (C) pep⁻¹ (D) pep⁻²
- 10. Three proteins, A, B, and C, have the same Molar Mass and size, but different isoelectric points, pI(A)=4.5, pI(B)=7.5, pI(C)=10.0. If they if they are put onto an electrophoresis column buffered at pH=9.0, then
 - (A) A, B and C will migrate towards the positive electrode
 - (B) A, B and C will migrate towards the negative electrode
 - (C) A & B will migrate towards the negative electrode, and C towards the positive electrode
 - (D) A & B will migrate towards the positive electrode, and C towards the negative electrode
- 11. In class, we discussed the buffering action of the CO₂/HCO₃⁻ and Hemoglobin (Hb) buffers in controlling the pH in blood? Which of the following statements is/are true?
 - (i) Because the principal metabolism products are carboxylic acids, the large excess of CO₂ relative to HCO₃⁻, makes this a suitable buffer to remove the added acid.
 - (ii) CO₂ produced in the muscles raises the pH of the blood, which is then lowered by the Hb buffer.
 - (iii) The Hb molecules in blood transport the CO₂ produced by exercise from the muscles to the lungs.
 - (A) iii only (B) i and iii (C) ii and iii (D) i only
- 12. The reaction A \rightarrow Products, is of order 3/2; i.e. rate=k[A]^{3/2}. Which plot will give a straight line?
 - (A) $1/[A]^{3/2}$ vs. t (B) $1/[A]^{1/2}$ vs. t (C) $1/[A]^{5/2}$ vs. t (C) $[A]^{1/2}$ vs. t
- 13. The reaction, $A \rightarrow$ Products, is third order. When the initial concentration, $[A]_o=0.05$ M, the initial rate is $r_o=0.15$ M/s. Therefore, the rate constant, k, is

(A) 1.2x10³ M⁻²s⁻¹ (B) 3.33 M⁻²s⁻¹ (C) 1.9x10⁻⁵ M⁻²s⁻¹ (D) 8.3x10⁻⁴ M⁻²s⁻¹

- 14. The reaction, $A \rightarrow P$, is of order "x"; i.e. rate = k[A]^x. When [A₀]= 0.3 M, the half-life of the reaction is 200 s. When [A]₀= 0.6 M, the half life of the reaction is 50 s. The order of the reaction, x, is
 - (A) -1 (B) 1 (C) 2 (D) 3

15. Consider the reaction, $A \rightarrow P$, which is **second** order; i.e. $r = k[A]^2$. When the initial concentration is $[A]_0 = 0.6$ M, it takes 150 seconds for the concentration, [A], to decrease to 0.2 M. Therefore, the rate constant for this reaction is:

(A) 2.2x10⁻² M⁻¹s⁻¹ (B) 1.1x10⁻² M⁻¹s⁻¹ (C) 7.3x10⁻³ M⁻¹s⁻¹ (D) 5.0x10² M⁻¹s⁻¹

16. The half-life of ¹⁴C is $t_{1/2} = 5730$ yr. (corresponding to $k = 1.21 \times 10^{-4}$ yr⁻¹). The natural abundance of ¹⁴C in living matter is 1×10^{-12} mol %. If an artifact is 14,000 years old, what will be the natural abundance of ¹⁴C in the artifact?

(A) 1.8x10⁻¹³ mol % (B) 2.7x10⁻¹³ mol % (C) 5.6x10⁻¹³ mol % (D) 1.1x10⁻¹³ mol %

- 17. The half-life for the nuclear transformation of 40 K to 40 Ar is 1.25 billion years. In a given rock, the ratio of 40 K to 40 Ar is: $[{}^{40}$ K]/ $[{}^{40}$ Ar] = 0.70. The age of this rock is:
 - (A) 2.7 billion yrs. (B) 0.9 billion yrs. (C) 1.6 billion yrs. (D) 0.4 billion yrs

PART II. THREE (3) PROBLEMS FOLLOW (Show work for partial credit)

(10) 1. HCN is a weak acid with $K_a = 4.9 \times 10^{-10}$. A solution of 0.60 M KCN is prepared and the pH is adjusted to 9.00. Calculate the concentrations, [HCN] and [CN⁻¹] of the solution.

(10) 2. Selenous Acid, H_2SeO_3 , is a diprotic acid with pKa's: pKa' = 2.46 , pKa'' = 7.30

Calculate the pH of a solution prepared by adding 700 mL of 1.00 M HCl to 800 mL of 0.50 M sodium selenite, Na_2SeO_3 .

(12) 3. Consider the reaction, $A \rightarrow$ Products, which is of third order; i.e. Rate = k[A]³. The integrated rate equation for a third order reaction is:

$$\frac{1}{[A]^2} - \frac{1}{[A]_0^2} = 2kt$$

For a given third order reaction, the initial concentration is $[A]_0 = 0.80$ M, and the rate constant is k = 0.10 M⁻²s⁻¹.

(6) (a) How long from the start of the reaction would it take for the concentraton of A to decrease from 0.80 M to 0.30 M ?

(6) (b) What will be the concentration, [A], 140 seconds after the start of the reaction ?