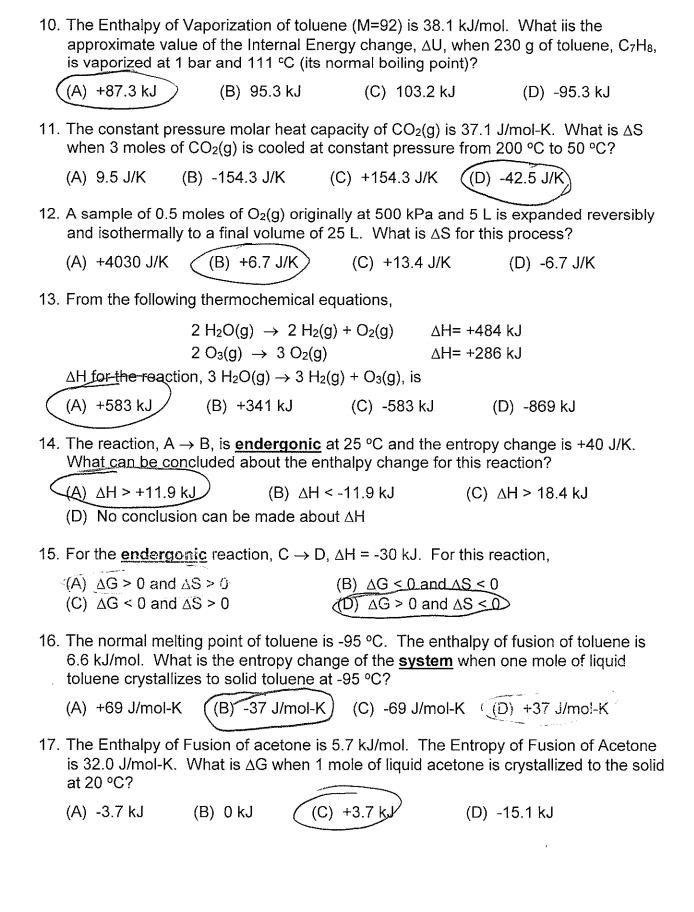
CHEM 3530 - Final Exam - May 8, 2017

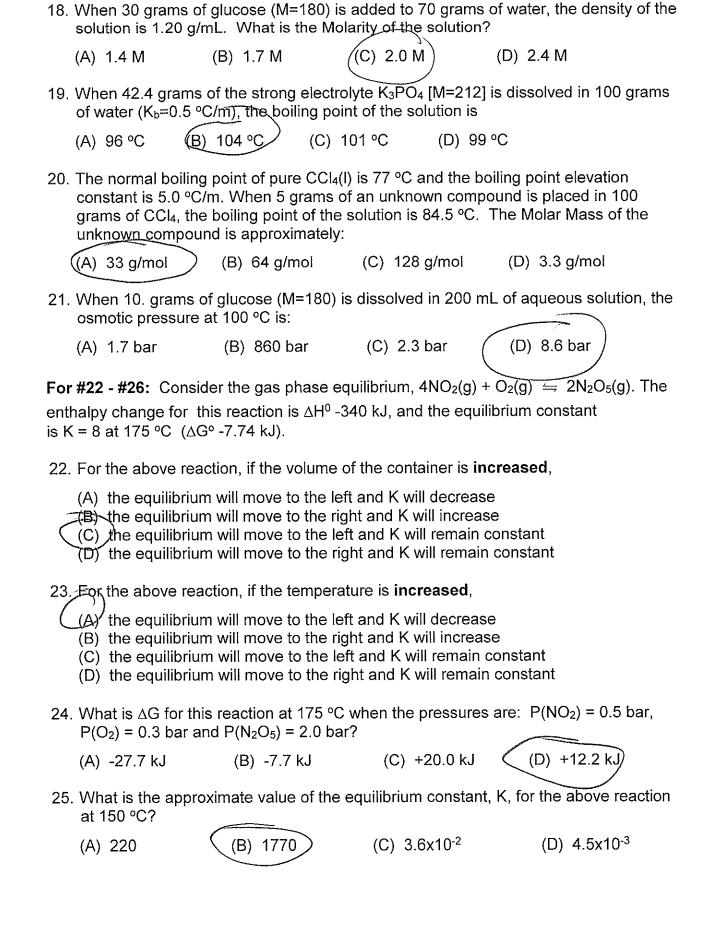
	Name				
Sign if you wish to have your final/course grade posted on the Web, provide me with digit number of your choice, and sign below:					
Yes I wish to have my final examusing the 4 digit number given	m and course grades posted on the CHEM 3530 Web sit below.				
Signature	Four (4) digit number for posting.				

Constants and Conversion Factors

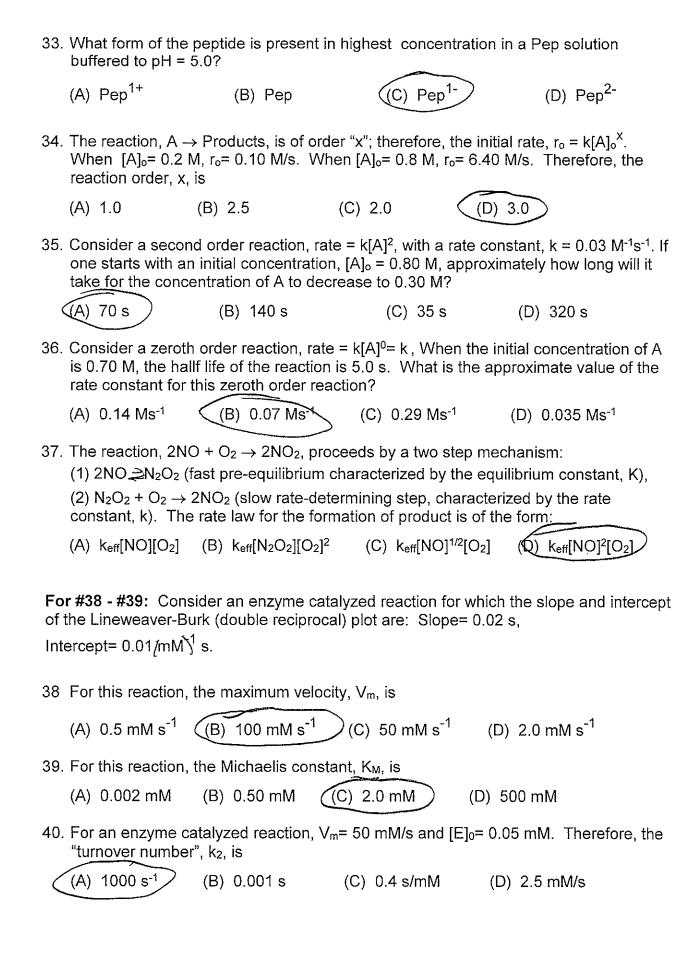
 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ R = 8.31 J/mol-K = 8.31 kPa-L/mol-K1 bar = 100 kPa = 750 torr 1 kPa = 7.50 torr 1 J = 1 kPa-L

Solatins


(129 pts) PART I. MULTIPLE CHOICE (Circle the ONE correct answer)


1.		sample of decane, $C_{10}H_{22}$ (M=142), contains $5.0x10^{24}$ atoms of Hydrogen. What e mass of the sample?			
	(A) 28.4 g	(B) 53.6 g	(C) 1180 g	(D) 2.6x10 ⁴ g	
2.		pressure of a sample of O ₂ (g) is 350 torr in a 50 L container at 400 °C. What is pressure of this gas in a 20 L container at 100 °C?			
	(A) 1580 torr (I	B) 485 torr	(C) 220 torr	(D) 78 torr	
3.	How many molecules 1.0 bar?	of CO ₂ (M=44) are	contained in a 15 L	container at 150 °C and	
	(A) 7.2x10 ²³	(B) 2.6x10 ²¹	(C) 5.8x10 ²²	(D) 2.6x10 ²³	
4.	A sample of C ₄ H ₁₀ (g) [M=58] effuses through a pinhole in 60. s. An equivalent amount of an unknown gas, X, effuses through the pinhole in 90 s. What is the approximate Molar Mass of the uinknown gas?				
	(A) 26 g/mol	(B) 45 g/mol	(C) 131 g/mol) (D) 87 g/mol	
5.	A 110 gram sample of CO ₂ (g) (M=44) is initially at 75 °C. When 5.0 kJ of heat is removed from the sample at constant pressure, the final temperature is 21 °C. The constant pressure molar heat capacity of CO ₂ is approximately:				
	(A) 28.8 J/mol-K (B) 51.7 J/mol-K	(C) 92.6 J/mol-K	(D) 37.0 J/mol-K)	
6.	When a gas is cooled	at constant pressu	ıre, :		
	$(A) w > 0, \Delta H < 0$	(E	3) $W < 0$, $\Delta H < 0$		
	(C) $w < 0$, $\Delta H > 0$	([0) $W = 0$, $\Delta H < 0$		
7.	What are q and ∆H wh from 5 L to 40 L at 25		as is expanded rever	rsibly and isothermally	
	(A) $q = -10.3 \text{ kJ}, \Delta H = 0$	0 <	B) q= +10.3 kJ, ΔH=	=0)	
	(C) q=0, ∆H= 0	(D) q=0, ΔH=+10.3 k	J	
8.	Zinc reacts with Hydrochloric acid according to the reaction: $Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$. What is the work, in kJ, when 1.5 moles of $Zn(s)$ react with an excess of HCl(aq) at 1 bar and 30 °C?				
	(A) -3.8 kJ (B)	-2.5 kJ	(C) +3.8 kJ	(D) +2.5 kJ	
9.	What is the approximate vaporized at 1 bar and			e, C ₇ H ₈ ,(M=92) is	

(C) -8.0 kJ


(D) -2.3 kJ

(A) +2.3 kJ (B) +87.9 kJ

26. What is K for the	e reaction, N₂O₅ ⇔	2NO ₂ (g) + ½O ₂ (g) a	at 175 ºC.				
(A) 0.35	(B) 0.25	(C) 2.8	(D) 4.0				
27. For the gas phase equilibrium, $2A(g) + B(g) = 2C(g)$, the equilibrium constant is							
$K = 1x10^{-3}$. If or	$K = 1x10^{-3}$. If one puts A and B into a vessel with initial pressures, $P_{init}(A) = P_{init}(B) = 3$. bar, what is the pressure of C at equilibrium?						
NOTE: You ma	y assume that ver	y little A and B react	•				
(A) 0.045 bar	(B) 0.164 bar	(C) 0.082 bar	(D) 0.063 bar				
For #28 - #29: Hydr $Ka = 5.0 \times 10^{-10}$.	rocyanic acid, HCN	I, is a weak acid with	n acid dissociation constant,				
28. What is the pH	of 0.2 M potassium	ı cyanide, KCN?					
(A) 2.7	(B) 5.0	(C) 9.0	(D) 11.3				
29. What is the pH	of 2 Liters of 0.3 M	KCN following the	addition of 0.2 mol of HCl?				
(A) 5.0	(B) 9.0	(C) 9.6	(D) 9.8				
For #30 - #33: Co Aspartic Acid resid (pictured on right)		de (Pep) consisting of residue	of an O O H₂N——CH—C——N——CH—C——OH I H I				
The two side groups ionize according to: $CH_2CO_2H = CH_2CO_2$ and $-CH_2SH = H^+ + -CH_2S^-$							
The four pK _a 's are: pK _a ' (α -CO ₂ H) = 1.9, pK _a "(β -CO ₂ H) = 3.9, pK _a "'(CH ₂ SH) = 8.5 and pK _a ""(α -NH ₃ ⁺) = 9.9							
30. What is the pH most acidic form		ts of NaOH are add	ed to a solution containing the				
(A) 2.9	(B) 3.9	(C) 6.2	(D) 8.5				
31. What pH corres	ponds to the isoel	ectric point, pl, of Pe	ep?				
(A) 2.9	(B) 3.9	(C) 6.2	(D) 9.2				
32. What is the average charge of Pep at pH = 8.5?							
(A) -1.5	(B) -0.5	(C) -2.0	(D) -2.5				
_							

- 41. When an inhibitor is added to an enzyme catalyzed reaction, it is found that the intercept of the Lineweaver-Burk plot is increased, but the slope is not affected.. Therefore, the type of inhibition is
 - (A) Uncompetitive (B) Noncompetitive (C) Competitive (D) Briggs-Haldane

For #42 - #43: Consider an enzyme catalyzed reaction with K_M = 40 mM, V_m = 150 μ M/s, and [S]= 80 mM. An **Uncompetitive** inhibitor to this reaction has an inhibitor constant, K_I = 20 mM.

- 42. What is the initial velocity, vo, in the absence of the inhibitor?
 - (A) $50 \mu M/s$
- (B) $120 \mu M/s$

< (C)	100	$\mu M/s$
70	100	H14173

- (D) 225 μM/s
- 43. What is the percent inhibition (i%) when the inhibitor concentration is [I]= 50 mM?
 - (A) 38%
- (B) 45%
- (C) 71%

(30) PART II. THREE (3) PROBLEMS FOLLOW (Show work for partial credit)

(08) 1. The reaction, 2 C + D → P (P is the product) proceeds by the following mechanism:

$$\begin{array}{ccc} & k_1 & & k_2 \\ C + D \rightleftharpoons \mathbf{I} & \text{followed by} & \mathbf{I} + C \longrightarrow P \\ & k_{-1} & & \end{array}$$

"I" is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of [C], [D], k_1 , k_{-1} and k_2 .

SS Appnix dCT = 0. A[CT[DT-A, [I]-A[CT][C]] ECT = A[CT[D] - [CT][A, A[CCT]] $A_1 K_2[C]$ $R = A_2 [CT[C] + A_2 K_3 [CT][D]$ $A_2 A_3 [CT][C] + A_3 A_4 [CT][D]$

(12) 2. The rate constant for a first order reaction is 0.20 s⁻¹ at 30 °C and 12.40 s⁻¹ at 100 °C.

> Calculate the Activation Energy, Ea (in kJ/mol) and the Pre-Exponential Factor, A (in s⁻¹) for this reaction.

72=100°c=373K

$$A = A A, \epsilon = \frac{60}{2} = \ln(0,20) \epsilon = 57,370 \text{ Th.} \frac{1}{303 \text{ K}}$$

$$= 20.38$$

(10) 3. An enzyme has the Michaelis-Menten parameters, $K_M = 8.0 \times 10^{-4}$ M and $V_m = 80$ mM/min. The inhibition equilibrium constant for **Competitive** inhibition is $K_1 = 2.5 \times 10^{-4}$ M. When [S]= 1.0×10^{-3} M, calculate the inhibitor concentration, [I], required to get 80% inhibition (i.e. i%=80) for this **Competitive** inhibitor.

$$K_{M}^{2} = 8 \times 10^{6} M$$

$$E_{M}^{2} = 100 \left(1 - (V_{0}) \text{ m/s} \right)$$

$$E_{M}^{2} = 100 - i \eta_{2} = 100^{6}$$

$$= 100 \text{ Wolard}$$

$$K_{T}^{2} = 2.5 \times 10^{6} M$$

$$= 80 \eta_{0} \quad V_{0}$$

$$V_{0}^{2} \quad V_{0}^{2}$$

$$V_{0}^{2} \quad V_{0}^{2}$$

$$V_{0}^{2} \quad V_{0}^{2}$$