Chapter 11 Homework

11.1 The reaction $2 \text{ H}_2\text{O}_2(\text{aq}) \rightarrow 2 \text{ H}_2\text{O}(1) + \text{O}_2(g)$ is catalyzed by Br ions. If the mechanism is:

$$H_2O_2 + Br^- \rightarrow H_2O + BrO^- \text{ (slow)}$$

 $BrO^- + H_2O_2 \rightarrow H_2O + O_2 + Br^- \text{ (fast)}$

Give the predicted rate law.

11.2 The reaction mechanism involves an intermediate, A. The mechanism is

$$A_2 \stackrel{K}{\longleftrightarrow} A + A \quad Fast \; Equilibrium$$

 $A + B \stackrel{k}{\longrightarrow} P \quad Slow \; RDS$

What is the rate law for the formation of P?

11.3 The reaction, $2A + B \rightarrow P$ (P is the product), proceeds via a rapid preequilibrium (with equilibrium constant, K) followed by a slow rate determining step (with rate constant, k_2) as shown below:

$$A = A_2$$
 (fast pre-equilbrium)

$$k_2$$
 $A_2 + B \rightarrow Products (slow)$

Develop an expression for the rate of formation of Products as a function of [A], [B], K and k_2 .

11.4 The following mechanism has been proposed for the decomposition of ozone

in the atmosphere.

$$O_3 = O_2 + O$$

$$k_{-1}$$

$$\begin{array}{c}
k_2 \\
O + O_3 \rightarrow O_2 + O_2
\end{array}$$

Use the steady-state approximation on [O] to develop an expression for the rate of the reaction, $-d[O_3]/dt$.

Show that if the k_2 step is slow, then the rate is second-order in $[O_3]$ and of order -1 in $[O_2]$.

11.5 The condensation reaction of acetone (HA) in aqueous solution is catalyzed by a base (B), that reacts reversibly with acetone to form the carbanion (A⁻). The carbanion then reacts with an acetone to form the product. The Mechanism is:

$$k_1$$
 $AH + B \rightarrow BH^+ + A^-$ Formation of Carbanion k_2 $A^- + BH^+ \rightarrow AH + B$ Reverse of reaction 1 k_3 $A^- + AH \rightarrow \Pr{oduct}$ Reaction to form product

Use the steady-state approximation on the intermediate, [A⁻], to derive the rate equation for the formation of product.

11.6 The reaction, $A + B + C \rightarrow P$ (P is the product) proceeds by the following mechanism.

$$A + B = I$$

$$k_{-1}$$

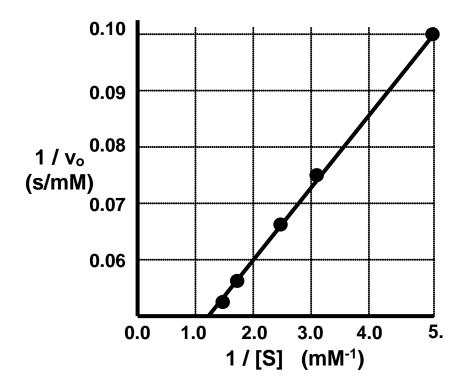
$$k_{2}$$

$$I + C \rightarrow P$$

"I" is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of [A], [B], [C], k_1 , k_{-1} and k_2 .

Analyze of the enzyme-catalyzed conversion of a substrate to form product at 25 °C yields a Michaelis Constant of 0.045 mol/L.

The rate of the reaction is 1.15 mM/s (milliMolar/s) when the substrate concentration is 0.110 mol/L


What is the maximum velocity, V_m, for this reaction?

- The hydrolysis of the substrate, N-glutaryl-L-phenylalanine-p-nitroanilide [GPNA], to p-nitroaniline and N-glutaryl-L-phenylanine is catalyzed by α -chymotrypsin. When $[E]_{\rm o}=4.0x10^{-6}$ M, it is found that $v_{\rm o}{=}3.7x10^{-8}$ M/s when $[S]{=}2.5x10^{-4}$ M and $v_{\rm o}{=}9.8x10^{-8}$ M/s when $[S]{=}1.0x10^{-3}$ M. Determine the slope and intercept of the Lineweaver-Burk plot and, from these, K_M , V_m , and k_2 for this reaction.
- An enzyme has the Michaelis-Menten parameters, $K_M = 2.8 \times 10^{-5}$ M and $V_m = 53$ $\mu M/min$. For [S]= 7.5×10^{-5} M and [I]= 4.8×10^{-4} M, and $K_I = 1.7 \times 10^{-4}$ M, calculate the initial rate [(v_o)_{inh}] and the percent inhibition [i%] for (a) competitive inhibition, (b) uncompetitive inhibition, and (c) nonncompetitive inhibition.
- 11.10 An enzyme-catalyzed reaction with $K_M = 2.7 \times 10^{-3}$ M is inhibited by a competitive inhibitor ($K_I = 3.1 \times 10^{-5}$ M). When the substrate concentration is 3.6×10^{-4} M, what inhibitor concentration, [I], is required to get 65% inhibition.
- 11.11 For an enzyme-catalyzed reaction, v_o was measured as a function of [S], and the Lineweaver-Burk plot $(1/v_o \text{ vs. } 1/[S])$ below was obtained.

Analysis of the graph shows that the Slope = 0.0133 s and Intercept = 0.0334 s/mM

Note: Determination of the slope and intercept is given in the solution. However, you will not be asked to perform the graphical analysis on a test.

Determine the maximum velocity, Vm, and the Michaelis Constant, K_M , for this reaction.

